
January 2023

Quality Indicators for Administrative Data1

User Manual For R Package on GitHub

Sook Kim and Natalie Shlomo
 University of Manchester

Version 1.2

1 Funded by the Grant: ‘Methodological Advancements on the Use of Administrative Data
in Official Statistics’ ESRC (ES/V005456/1)

Contents
1. Project aims and objectives ... 3

2. Quality indicators .. 3

2.1 Distance Metrics ... 4

2.2 R-indicators ... 5

3. User Guide on the R-package .. 7

3.1 Download and inspect the contents .. 7

3.1.1 Download ... 7

3.1.2 Downloaded contents explained .. 8

3.2 Launch RStudio and get ready ... 9

3.2.1 Open the entire master folder in RStudio ... 9

3.2.2 Set custom path ... 9

3.2.3 Automatically create output folders .. 10

3.2.4 Install packages .. 10

3.3 RUNNING 2_Prep_Wtsample_Freq_Table.R ... 11

3.3.1 Use the existing weighted sample data ... 11

3.3.2 Generate a weighted sample data ... 13

3.4 RUNNING 3A_Distance_Metrics.R ... 15

Step 1: Read admin data .. 16

Step 2: Obtain admin freq tables. ... 16

2

Step 3: Merge admin + Weighted sample freq tables ... 17

Step 4: Create domains of quality indicators ... 17

Step 5: Compute distance metrics .. 18

Step 6: Standardise distance metrics .. 18

Step 7: Reshape, then tidy ... 18

Step 8: Visualise the distance metrics .. 18

3.5 RUNNING 3B_R-indicator.R ... 19

Step 1: Prepare an Auxiliary data file ... 20

Step 2: Reshape and save benchmark data as row vectors .. 23

Step 3: Declare variables in administrative data ... 24

Step 4: Define macro variables .. 24

Step 5: Compute R-indicators .. 25

Step 6: Save in Excel and inspect .. 29

Step 7: Visualising using scatterplots ... 30

4. Troubleshooting Questions and Answers ... 31

4.1 Questions and Answers ... 31

How do I know where to customise the code to suit my needs? ... 31

How to use Starting path in multiple machines? .. 31

What are the commonly used commands? ... 31

How to free up memory space and speed up RStudio? ... 31

I get error messages when a pre-defined function is used... 31

How do I modify pre-defined functions? ... 32

What approaches are taken in programming? .. 33

Can I ignore Warning messages? .. 33

What version of R is used? .. 33

4.2 Troubleshooting ... 33

Unused argument error ... 33

I get errors when computing… .. 33

I am experiencing slowness in computation.. 34

Error: cannot allocate vector of size xxxx.x Gb ... 34

References .. 34

Citation ... 34

3

1. Project aims and objectives

The Office for National Statistics (ONS) have strategic priorities on embedding and advancing
the use of administrative data into their official statistics processes. Their immediate priority is
to use administrative data in the quality assurance of the 2021 census and to develop the
production of administrative-based population estimates (ABPEs). A more long-term priority is
the Population Statistics Transformation Programme which will feed into a recommendation to
Government due in 2023 on the future of census and population statistics. In particular, the
objective is to create population characteristic estimates from administrative and integrated
data sources.

Motivated by these initiatives, the University of Manchester was successfully awarded an ESRC
grant from April 2021 to January 2023 titled: ‘Methodological Advancements on the Use of
Administrative Data in Official Statistics’ (ES/V005456/1). The funded research enabled
collaborations with the ONS on researching and developing methods to enhance the use of
administrative data in official statistics.

This user manual concerns the sub-project related to developing a quality framework and
quantitative measures to assess representativeness and coverage for a single administrative
data source. We use univariate and bivariate distributions obtained from high- quality large
random probability surveys (such as the UK Annual Population Survey) and compare them to
distributions in the administrative data on a common set of variables based on distance metrics
between these distributions. In addition, we developed a Representativity (R-) Indicator that is
designed for quantifying the representativeness of population groups in the administrative
data. Section 2 describes the methods underpinning the R-code hosted in GitHub and Section 3
describes the R-code with a running example of its outputs. We conclude in Section 4 with
troubleshooting questions and answers.

2. Quality indicators

In the R-code on GitHub we focus on quality indicators to identify errors arising from coverage
and representativeness of a single administrative data source. It is vital that statistical agencies
have good quality indicators to ensure the fit of administrative data to the population and to
identify those sub-groups that are missing or over-covered, especially when the administrative
data contributes to an integrated dataset for multisource processing or to quality assure other
data sources, such as surveys and censuses.

4

2.1 Distance Metrics

In this section we compare distributions obtained from the administrative data with external
population auxiliary information, either obtained directly from a census or estimated from a
large probability-based random survey.

Denote variable 𝑣 having categories ℎ, ℎ = 1, 2 … 𝐻 in the administrative dataset having M
individuals. Let ∆ℎ,𝑖

𝑣 be the 0-1 indicator for individual 𝑖 being a member of category ℎ in

variable 𝑣. We can then calculate the counts for category ℎ : 𝑚ℎ
𝑣 = ∑ ∆ℎ,𝑖

𝑣 𝑀
𝑖=1 and note that

∑ 𝑚ℎ
𝑣 = 𝑀𝐻

ℎ=1 . We can also obtain the probability distribution of variable 𝑣 having category

ℎ, ℎ = 1, 2 … 𝐻 and calculate: 𝑝ℎ
𝑣 =

𝑚ℎ
𝑣

𝑀
. We note that the variable 𝑣 can also represent a

cross-tabulation of two or more variables, for example age group × sex.

Now assume we have equivalent estimates of these distributions from a census, or alternatively
from a large probability-based random sample of size 𝑛 where every individual 𝑖 in the sample
has an associated survey weight 𝑤𝑖 . The survey weights typically are calibrated to known
population benchmarks and hence sum to the known population size 𝑁. In this case, 𝑛ℎ

𝑣 =

∑ 𝑤𝑖∆ℎ,𝑖
𝑣 𝑛

𝑖=1 and ∑ 𝑛ℎ
𝑣 = 𝑁𝐻

ℎ=1 . Moreover, the equivalent distribution is 𝑞ℎ
𝑣 =

𝑛ℎ
𝑣

𝑁
.

The entropy measures the uniformity of the probability distributions and hence can be
compared when calculated on the administrative data distribution versus the population
distribution. The formula for the entropy on the probability distribution {𝑝ℎ

𝑣, ℎ = 1, … , 𝐻} is: -
∑ 𝑝ℎ

𝑣
ℎ 𝑙𝑜𝑔(𝑝ℎ

𝑣) and similarly on the probability distribution {𝑞ℎ
𝑣, ℎ = 1, … , 𝐻} .

 We can now use a variety of distance metrics to assess deviations between the
distributions {𝑝ℎ

𝑣, ℎ = 1, … , 𝐻} and {𝑞ℎ
𝑣, ℎ = 1, … , 𝐻} . In this research, we assess three

distance metrics: the Indicator of Dissimilarity (Duncan and Duncan, 1955), Hellinger’s Distance
(HL) and the Kullback-Leibler divergence (KL). The formula for the three distance metrics is
given in Table 1.

Table 1: Distance metrics between the distribution calculated from the administrative data
 {𝑝ℎ

𝑣, ℎ = 1, … , 𝐻} and the distribution from the population {𝑞ℎ
𝑣, ℎ = 1, … , 𝐻} on variable 𝑣

Distance Metrics Formula Standarize

Indicator of Dissimilarity (ID) 1

2
∑ |𝑝ℎ

ℎ
− 𝑞ℎ|

1-ID

Hellinger’s Distance (HL) 1

√2
√∑ (√𝑝ℎ − √𝑞ℎ)

2

ℎ

1-HL

5

Kullback-Leibler Divergence
(KL)

∑ 𝑝𝑘
ℎ

𝑙𝑜𝑔 (
𝑝ℎ

𝑞ℎ
) 1-KL

There are subtle differences between these distance metrics. For example, Hellinger’s Distance
places more weight on the smaller proportions compared to the larger proportions whereas the
Indicator of Dissimilarity treats all proportions equally. More work is needed on standardizing
the distance metrics into meaningful quality measures. We have yet to determine which
distance metric should be used and therefore propose to include all of them in the R-code. This
will facilitate more empirical work for future recommendations.

2.2 R-indicators

The R-indicator and its related partial R-indicators were originally designed to assess the
representativeness of responses from a survey and are particularly useful as an objective
function in the optimization of adaptive survey designs (Schouten, et al. 2009, Schouten and
Shlomo, 2017). The R-indicators measure the contrast between those who are missing and not
missing in the data and identify those groups that are not represented in the data. Here, we
develop the R-indicator and partial R-indicators to assess the representativeness and coverage
of an administrative dataset compared to a target population. Recent research by Bianchi, et
al. (2019) adapts the R-indicator to the case where only population-based auxiliary information
are available instead of sample-based frame information. We draw upon this research and
utilize population-based auxiliary information where the population auxiliary information is
obtained by weighted survey counts from a large probability-based random sample.

To calculate the population-based R-indicator, denote the response indicator 𝑟𝑖 equal to 1 for
all units in the administrative dataset. We have information available on the values 𝒙𝒊 =
(𝑥1,𝑖, 𝑥2,𝑖, … , 𝑥𝐾,𝑖)

𝑇 of a vector of 𝐾 auxiliary variables X, for example, sex, age group,
geographical region, ethnic minority group and employment status. Therefore, each 𝑥𝑘,𝑖 is a
binary indicator variable. We also assume that values of 𝒙𝒊 are observed for all individuals in
the administrative dataset so that {𝑥𝑖; 𝑖 ∈ 𝑟} is observed.

Assume we know 𝒙𝒊 at the aggregate level: the population total ∑ 𝒙𝒊𝑈 and population cross-
products ∑ 𝒙𝒊𝑈 𝒙𝒊

𝑻 . This information is known as the population–based auxiliary information. If
this information is not available at the population level we can estimate the aggregates and cross-
products using a large probability-based random sample, denoted 𝑠, where each individual 𝑖 in
the sample has a survey weight 𝑤𝑖. The estimated population-based auxiliary information is then:
∑ 𝑤𝑖𝒙𝒊𝑠 and ∑ 𝑤𝑖𝒙𝒊𝒙𝒊

𝑻
𝑠 . We also know the overall total in the population, denoted by 𝑁.

Response propensities are defined as the conditional expectation of the response indicator
variable 𝑟𝑖 given the values of specified variables: 𝜌𝑖 ≡ 𝜌𝑋(𝒙𝒊) . In the population-based setting

6

we model the response propensities under an identity link function where the true response

propensities satisfy: 𝜌𝑖 = 𝒙𝒊
𝑻𝜷, 𝑖 ∈ 𝑈 . For the linear probability model, the estimate of 𝜌𝑖 in the

sample-based scenario is given by: �̂�𝑖
𝑂𝐿𝑆 = 𝒙𝒊

𝑻(∑ 𝑑𝑖𝒔′ 𝒙𝒊𝒙𝒊
𝑻)−𝟏 ∑ 𝑑𝑖𝒔′ 𝒙𝒊𝑟𝑖

 , 𝑖 ∈ 𝑠′ , where 𝑑𝑖 is
the design weight and 𝑠′ denotes the sample under analysis.

In the case of population-based auxiliary information where we know both population totals
and cross-products, we note that ∑ 𝑑𝑖𝒙𝒊𝑠′ and ∑ 𝑑𝑖𝒙𝒊𝑠′ 𝒙𝒊

𝑻 are unbiased estimates for ∑ 𝒙𝒊𝑈
and ∑ 𝒙𝒊𝑈 𝒙𝒊

𝑻, respectively and that in large samples we may expect that ∑ 𝑑𝑖𝒙𝒊𝑠′ ≈ ∑ 𝒙𝒊𝑈 and
∑ 𝑑𝑖𝒙𝒊𝑠′ 𝒙𝒊

𝑻 ≈ ∑ 𝒙𝒊𝑈 𝒙𝒊
𝑻. It follows that, in the population-based setting, we may approximate

�̂�𝑖
𝑂𝐿𝑆 by �̂�𝑖

𝑃 = 𝒙𝒊
𝑻(∑ 𝒙𝒊𝒙𝒊

𝑻
𝑼)−𝟏 ∑ 𝑑𝑖𝒙𝒊𝒓 , 𝑖 ∈ 𝑟 and we refer to the propensities as ‘participation’

propensities. Note that �̂�𝑖
𝑃 is computed only on the set of individuals in the administrative data.

In addition, in our setting of assessing the representativeness in administrative data, the design
weight 𝑑𝑖 is the inverse of the coverage weight: 𝑑𝑖 = [𝑀/𝑁]−1 where 𝑀 is the number of
individuals in the administrative dataset.

In the population-based setting, an estimator for the R-indicator is given by �̂��̂�𝑃 = 1 − 2�̂��̂�𝑃

where �̂�
�̂�𝑃
2 =

𝑁

𝑁−1
{

1

𝑁
∑ 𝑑𝑖�̂�𝑖

𝑃
𝑟 − [

1

𝑁
∑ 𝑑𝑖]𝑟

2
} and �̂�𝑖

𝑃 is estimated as above. This estimator of the R-

indicator makes the estimator �̂�𝜌
2 linear in �̂�𝑖

𝑃 which provides an advantage for size bias

adjustment computations (although given the large administrative datasets, a size bias

adjustment is not needed). Furthermore, we use propensity weighting by �̂�𝑖
𝑃−1

 to adjust for
coverage bias. The R-indicator measures the variation of the sub-group participation
propensities. If the participation propensities are all equal and there is no variation in sub-group
participation, the R-indicator would obtain a value of 1.

The unconditional partial R-indicator measures the amount of variation of the participation
propensities between the categories of a variable. The larger the between-category variation is,
the stronger the relationship is and the stronger the impact of the variable on a lack of
representativeness. As earlier, let 𝒙𝒌 be one of the components of the vector 𝑿. The variable 𝒙𝒌
is categorical and assume it has 𝐻 categories. Let 𝑚ℎ denote the weighted respondent size in
category ℎ in the administrative data, for ℎ = 1, 2, . . . , 𝐻. That means 𝑚ℎ = ∑ 𝑑𝑖∆ℎ,𝑖𝑖𝜖𝑟 where

∆ℎ,𝑖 is the 0-1 indicator for participating unit 𝑖 being a member of category ℎ and ∑ 𝑚ℎ = 𝑁𝐻
ℎ=1

given the definition of 𝑑𝑖 as the inverse coverage weight. Define �̂̅�ℎ the average of the
participation propensities in category ℎ of 𝒙𝒌 for the units in the administrative dataset and

�̂̅� the overall average participation probability based on the estimated population-based

participation propensities �̂�𝑖
𝑃 . The estimate for the unconditional partial R-indicator for variable

𝒙𝒌 is: 𝑅𝑈(𝒙𝒌) = √
1

𝑁
∑ 𝑚ℎ(�̂̅�ℎ − �̂̅�)2𝐻

ℎ=1 . The upper bound of the unconditional partial R-

indicator is 0.5. The larger the value of the partial R-indicator, the stronger the association of the
variable with a lack of representativeness in the administrative dataset. By computing and
comparing the unconditional partial indicators for a set of variables it can be established for
which variables the relationships are strongest. The unconditional partial R-indicator at the

7

category level ℎ for variable 𝒙𝒌 is 𝑅𝑈(𝒙𝒌
𝒉) = √

𝑚ℎ

𝑁
 (�̂̅�ℎ − �̂̅�) and can assume positive and

negative values. Note that at the category-level, a negative sign represents under-representation
and a plus sign represents over-representation.

Finally, we note that when producing estimates from the administrative dataset, one should

weight each individual 𝑖 by its inverse participation propensity: �̂�𝑖
𝑃−1

 to adjust for coverage bias
in the estimates.

3. User Guide on the R-package

This package assumes that there is a Census file to obtain auxiliary population estimates and
the administrative datasets under analysis. However, in real settings we would not have a
Census microdata to work with, rather we would have a large probability-based survey sample
for estimating population distributions. Therefore, we draw a random sample from the Census
microdata to support this scenario and obtain auxiliary population totals from weighted sample
counts.

3.1 Download and inspect the contents

 3.1.1 Download

Please visit the github site here: qualadmin link. Click on Code at the top-right corner. Then,
click on Download ZIP to download to your local machine.

Now, the downloaded folder needs to be placed in the designated location. We recommend
users decide the appropriate Drive (C, D, E, F, etc) to house the downloaded contents. Then,
create a new folder called admindata in File Explorer of your PC. Users can customise the new
folder name as appropriate. This is your starting path.

The screenshot showing starting path:

Under this Starting path, F:/admindata, place the downloaded folder from GitHub. Extract the
zip folder as necessary.

https://github.com/sook-tusk/qualadmin

8

As such, F:/admindata/qualadmin becomes the MASTER project folder. We’ll set it as working
directory1 in RStudio later.

3.1.2 Downloaded contents explained

Example datasets

We provide two example data sources.

Data type File name

Administrative public_release_admin.csv

Census pop_u_short_public_release_5vars.Rdata

Folders and R scripts

Under F:\admindata\qualadmin folder, you’ll be presented with the following contents.

The “User_manual” folder contains instructions on using the provided R code files.

The users do not need to do anything with the folder titled “Functions”. These pre-defined
functions are used to either enclose complex procedures or perform repetitive tasks including
cleaning and computing quality indicators. There are two files containing pre-defined functions.
There is no need to run function files independently.

The functions will be automatically called in when the three main R script files are run:
2_Prep_Wtsample_Freq_Table.R 3_A_Distance_Metrics.R 3_B_R-indicator.R

The 2_Prep_Wtsample_Freq_Table.R file creates necessary data needed to compute distance
metrics and R-indicators. The master file, 3_MASTER_Run_AB.R runs the above two main R
script files, (3_A_Distance_Metrics.R 3_B_R-indicator.R) automatically in sequence.

1 Notice that the terms, folder, directory, and path are used interchangeably in the user manual.

9

The first three files, 0_Custom_Path.R, 1_Create_Folders.R and 1_Install_Packages.R can
be run to get ready to run the above main analysis files, as discussed in the following section.

3.2 Launch RStudio and get ready

3.2.1 Open the entire master folder in RStudio

First, launch RStudio. Then, we need to open the entire folder F:/admindata/qualadmin
where downloaded materials are located.

Unfortunately, RStudio has no feature in the menu, but you could do so by accessing Files tab.
Click on ... as shown below.

Then, locate the master folder. In our example, it is F:/admindata/qualadmin.

3.2.2 Set custom path

Click open the R script file, 0_Custom_Path.R. Customise the starting path as needed, and set
the path to indicate the master folder. The example code is:

 # Starting path (CUSTOMISE PLEASE)
 setwd("F:/admindata")

 # Master project folder (USE AS IT IS)
 setwd("./qualadmin")

 # Check your current directory
 getwd()

10

Please ensure to use a single forward slash / as above. R will print an error when backward
slash \ is used in path. For instance,

 setwd("F:\admindata)`
 Error: '\a' is an unrecognized escape in character string starting ""F:\a
"

Please ensure your working directory is set at the master project path throughout the
analytical steps.

3.2.3 Automatically create output folders

The three main R script files 2_Prep_Wtsample_Freq_Table.R, 3_A_Distance_Metrics.R,
3_B_R-indicator.R produce outputs. The outputs may be text, figure or in spreadsheet form.
For the existing programmes to work, users need to create dedicated output folders.

To do so, please click on the 1_Create_Folders.R file to open. Then run line by line. The
resulting folder structure is provided here:

3.2.4 Install packages

The final preparation step is installing packages. Open 1_Install_Packages.R file, and run
line by line.

 #-----------------------------------
 # Install packages (Run once)
 #-----------------------------------

 install.packages("ggplot2")
 install.packages("tidyverse")

 install.packages("car")

Now, you’re all set to proceed with quality measures indicators!

11

3.3 RUNNING 2_Prep_Wtsample_Freq_Table.R

This code file calculates the distributions of the weighted sample data. If the Census data or a
weighted sample data are available, users consult 3.5.1 Use the existing sample data. For a
scenario where these data are unavailable, users can generate the data as shown in 3.5.2
Generate a weighted sample data.

Open the 2_Prep_Wtsample_Freq_Table.R file.

The top of the code file concerns checking the current directory, reading in the pre-defined
functions in the R environment and loading relevant R libraries.

 getwd()

 # Run the code file with functions.
 source("Functions/1_Functions.R")

 # Define output file folders, path
 fn_output_folder_path()

 # Disable scientific notation.
 options(scipen = 999)

 library("tidyverse") # data manipulation
 library("ggplot2") # visualisation
 library("janitor") # cross-tabulation
 library("readxl") # read large csv file
 library("writexl") # export to Excel

3.3.1 Use the existing weighted sample data
• Step 1: Read in the data.

 df <- read_csv("custom_wtsample.csv")

 dim(df) # obs = 1163650 (example)
 glimpse(df) # Quick glance at the data

Users decide which variables are to be used for tabulation. For example, users may
identify the following five variables.

 names(df) # variable names

 [1] "geog1" "sex" "agecode1" "eth_code5"
 [5] "econg"

12

• Step 2: Declare variables to be tabulated. Here, we declare all five variables using var
object2. Users can customize the variable names here. By running the code below, R
automatically saves the total number of variables, 5 in a macro called maxvar.

 var <- c("geog1", "sex", "agecode1", # Please customise
 "eth_code5", "econg")
 maxvar <- length(var) # No need to customise
 maxvar
 [1] 5

• Step 3: Obtain frequency table of categorical variables (count of categories).

This procedure is to assess and calculate the distribution of categories in the weighted sample.
Users can run the pre-defined function, fn_maxvar5_freq_table() to perform the task. The
function automatically obtains counts and structure the output in long form, organised by each
variable, and by its discrete category. In case of using four variables, users can use
fn_maxvar4_freq_table() instead3.

 fn_maxvar5_freq_table()

• Step 4: Carry out checks to see if the calculated frequency tables are accurate.

 freq_table[1:8, 1:9]

seq twdigits n p oneway v by1 by2
1 1 101 113250 0.09732308 1 1 geog1 01
2 2 102 148400 0.12752976 1 1 geog1 02
3 3 103 137450 0.11811971 1 1 geog1 03
4 4 104 175100 0.15047480 1 1 geog1 04
5 5 105 92300 0.07931938 1 1 geog1 05
6 6 106 497150 0.42723327 1 1 geog1 06
7 7 201 565350 0.48584196 1 2 sex 01
8 8 202 598300 0.51415804 1 2 sex 02

When we printed the first 8 lines and 10 variables, we can see the count, n, and the
corresponding proportion, p by each variable. The following code obtains the total
observation size and confirms that the total proportion adds up to 1, for geog1
variable. Here, the total observation size can be viewed as the population size.

 # Check whether the total adds up to 1
 sum(freq_table[1:6, "n"])

2 As the var object is treated as a global macro, the programme runs automatically using the information
stored in global macro, and produces the results. Users can save var in a separate RData file and load it
in each session, instead of repeating the procedure.

3 We do not provide functions for the maximum variable size beyond five. In such cases, users can create
their own functions by consulting the provided functions.

13

[1] 1163650

 sum(freq_table[1:6, "p"])

[1] 1

• Step 5: Rename and save.

• Step 6: Export the output frequency table in Excel with the file name,
Weightedsample_freq_table.xlsx.

• Step 7: Save the R objects as RData. Done.

3.3.2 Generate a weighted sample data
• Step 1: Load a Census microdata. It is called pop_u_short_public_release_5vars in

the provided example code.

 #H---------------------------------------
 ##> 1. Load Census data
 #H--------------------------------------

 load("pop_u_short_public_release_5vars.RData")
 df <- pop_u_short_public_release_5vars
 dim(df) # obs = 1163659
 names(df)

In our example Census data, we have 1,163,659 observations with five categorical
variables including geography, sex, age groups, ethnic groups, and economic
activity status. One can declare which variable to tabulate. Here, we declare all
five variables using var object4.

 var <- c("geog1", "sex", "agecode1",
 "eth_code5", "econg")

The description of categories, and distribution is shown below.

Variable Category Description N (%)

Total 1163659

geog1 1 LA codes 116128 (10.0)

 2 LA codes 150139 (12.9)

 3 LA codes 137520 (11.8)

 4 LA codes 170624 (14.7)

 5 LA codes 90873 (7.8)

 6 LA codes 498375 (42.8)

4 As the var object is treated as global macro, the programme runs automatically using the information
stored in global macro, and produces the results.

14

Variable Category Description N (%)

sex 1 male 564905 (48.5)

 2 female 598754 (51.5)

agecode1 1 16-20 82426 (7.1)

 2 21-25 94643 (8.1)

 3 26-30 110296 (9.5)

 4 31-35 120398 (10.3)

 5 36-40 119393 (10.3)

 6 14-45 101711 (8.7)

 7 46-50 94209 (8.1)

 8 51-55 100159 (8.6)

 9 56-60 77799 (6.7)

 10 61-65 65833 (5.7)

 11 66-70 57305 (4.9)

 12 71-75 51263 (4.4)

 13 76-80 43678 (3.8)

 14 81+ 44546 (3.8)

eth_code5 1 White 1081812 (93.0)

 2 Mixed/Multiple ethnic groups 10487 (0.9)

 3 Asian/Asian British 46446 (4.0)

 3 Black/African/Caribbean/Black British 16268 (1.4)

 4 Other ethnic group 8646 (0.7)

econg 1 In employment(FT, PT) 689140 (59.2)

 2 Unemployed 27744 (2.4)

 3 Out of workforce 446775 (38.4)

Using this prior information on the population distribution (based on the Census), we
can mimic the distribution in a random sample. See the next step.

• Step 2: Then, we draw a random sample 1:50.

• Step 3: From the randomly selected sample (1163659/50 = 23273), we then obtain
frequency table of categorical variables (count of categories). Users can run the pre-
defined function, fn_maxvar5_freq_table() to perform the task. The function5
automatically obtains counts and structure the output in long form, organised by each
variable, and by its discrete category.

5 We also provide fn_maxvar4_freq_table() for users who declare four categorical variables. We
do not provide functions for the maximum variable size beyond five. In such cases, users can create their
own functions by consulting the provided functions.

15

 fn_maxvar5_freq_table()

This procedure is to assess and calculate the distribution of categories in a random
sample (N = 23273). Based on the counts of the randomly selected sample, we
multiply the counts by 50. One may wonder why we multiply. As we reduced the
census sample by drawing a random sample by the 1:50 ratio, we need to convert the
shrank sample back to the original size (with the priori distribution). This explains why
we multiply by 50 (Weighted Sample N = 23273 * 50 = 1163650). This completes the
process of generating weighted sample survey data.

• Step 4: Carry out checks to see if the calculated frequency tables are accurate.

 freq_table[1:8, 1:9]

seq twdigits raw_n n p oneway v by1 by2
1 1 101 2265 113250 0.09732308 1 1 geog1 01
2 2 102 2968 148400 0.12752976 1 1 geog1 02
3 3 103 2749 137450 0.11811971 1 1 geog1 03
4 4 104 3502 175100 0.15047480 1 1 geog1 04
5 5 105 1846 92300 0.07931938 1 1 geog1 05
6 6 106 9943 497150 0.42723327 1 1 geog1 06
7 7 201 11307 565350 0.48584196 1 2 sex 01
8 8 202 11966 598300 0.51415804 1 2 sex 02

When we printed the first 8 lines and 10 variables, we can see the count, n, and the
corresponding proportion, p by each variable. The following code obtains the total
observation size and confirms that the total proportion adds up to 1, for geog1
variable. Here, the total observation size can be viewed as the population size.

 # Check whether the total adds up to 1
 sum(freq_table[1:6, "n"])

[1] 1163650

 sum(freq_table[1:6, "p"])

[1] 1

• Step 5: Rename and save.

• Step 6: Export the output frequency table in Excel with the file name,
Weightedsample_freq_table.xlsx.

• Step 7: Save the R objects as RData. Done.

3.4 RUNNING 3A_Distance_Metrics.R

To calculate distance metrics, we first obtain one-way, and two-way frequency tables of
categorical variables, and calculates proportions of each sub-category by each data source.

16

Previously, we dealt with frequency tables for the weighted sample data. Here, we calculate
distributions of administrative data. Next, we combine master (benchmark) and admin freq
tables. Then, we create domains for quality indicators, and finally compute distance metrics as
part of quality indicators. We offer three different types of distance metrics. To allow
comparison across the metrics, we standardise the calculations.

Users can also produce a summary table of three types of distance metrics, and visualise the
results.

The preliminary step is to ensure we have benchmark data. Simply source the previous file as
below to update it.

 source("2_Prep_Wtsample_Freq_Table.R")

Step 1: Read admin data
 df <- read_csv("public_release_admin.csv")

Rows: 1033664 Columns: 6
-- Column specification --

Delimiter: ","
dbl (6): person_id, geog1, sex, agecode1, eth_code5, econg

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this m
essage.

 tail(df)

A tibble: 6 x 6
person_id geog1 sex agecode1 eth_code5 econg
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1033659 1 1 6 1 1
2 1033660 6 1 6 1 1
3 1033661 6 2 5 1 1
4 1033662 5 1 12 1 3
5 1033663 1 2 9 1 1
6 1033664 6 2 9 1 1

The last six observations of the example admin data are shown above. As the person id goes up
to 1033664, we can see there are 1033664 observations in admin data. As such, we declare all
five variables for tabulations. If variables are already defined using var, users can skip this part.

 var <- c("geog1", "sex", "agecode1",
 "eth_code5", "econg")

Step 2: Obtain admin freq tables.

As mentioned in the previous section, we obtain frequency table of categorical variables (count
of categories). Users can run the pre-defined function, fn_maxvar5_freq_table() to perform

17

the task. The function6 automatically obtains counts and structure the output in long form,
organised by each variable, and by its discrete category.

Once the frequency tables are obtained, we rename the object as Admin_f_table_one. Let’s
inspect Admin_f_table_one.

 head(Admin_f_table_one)

seq twdigits admin_n admin_perc oneway v by1 by2 by3 by4 by5
1 1 101 137993 0.1334989 1 1 geog1 01 oneway 0 0
2 2 102 124051 0.1200110 1 1 geog1 02 oneway 0 0
3 3 103 131176 0.1269039 1 1 geog1 03 oneway 0 0
4 4 104 139867 0.1353119 1 1 geog1 04 oneway 0 0
5 5 105 142304 0.1376695 1 1 geog1 05 oneway 0 0
6 6 106 358273 0.3466049 1 1 geog1 06 oneway 0 0

 tail(Admin_f_table_one)

seq twdigits admin_n admin_perc oneway v by1 by2 by3 by4 by5
340 340 404501 8557 0.0082783187 2 4 eth_code5 04 econg 5 01
341 341 404502 791 0.0007652390 2 4 eth_code5 04 econg 5 02
342 342 404503 5007 0.0048439338 2 4 eth_code5 04 econg 5 03
343 343 405501 3867 0.0037410609 2 4 eth_code5 05 econg 5 01
344 344 405502 255 0.0002466953 2 4 eth_code5 05 econg 5 02
345 345 405503 3420 0.0033086187 2 4 eth_code5 05 econg 5 03

Step 3: Merge admin + Weighted sample freq tables
 fn_merge_one_admin_wtsample_f_table_temp()

The code above merges two data sources.

Step 4: Create domains of quality indicators
 fn_create_domain_temp()

To check the domains, we can use Janitor package’s tabyl function7. The function creates 15
domains, including five single variables’ domain, and ten bivariate domains.

 display_domain %>% tabyl(fct_domain)

fct_domain n percent
geog1 6 0.017391304
sex 2 0.005797101
agecode1 14 0.040579710

6 We also provide fn_maxvar4_freq_table() for users who wish to declare four categorical
variables.

7 This is essentially almost identical to table(display_domain$fct_domain), but the approach by
tabyl produces percent by default.

18

eth_code5 5 0.014492754
econg 3 0.008695652
geog1:sex 12 0.034782609
geog1:agecode1 84 0.243478261
geog1:eth_code5 30 0.086956522
geog1:econg 18 0.052173913
sex:agecode1 28 0.081159420
sex:eth_code5 10 0.028985507
sex:econg 6 0.017391304
agecode1:eth_code5 70 0.202898551
agecode1:econg 42 0.121739130
eth_code5:econg 15 0.043478261

Step 5: Compute distance metrics

Run the functions to compute three types of distance metrics.

 fn_unstd_distance_metrics_full()
 fn_unstd_distance_metrics_tidy()

Step 6: Standardise distance metrics

Step 7: Reshape, then tidy

From wide form, the outputs have been reshaped to long form. Then, we keep standardised
solutions. The results are as follows:

 df <- distance_metrics_long
 # std_test(1-Duncan, 1-HD, 1-KL) only
 df <- df %>% filter(std_test_use == 1)

 df[1:9, c(1:2, 4:5, 9)]

A tibble: 9 x 5
domain_id domain indicator index std_test_use
<int> <chr> <chr> <dbl> <dbl>
1 1 geog1 Std_Duncan 0.897 1
2 1 geog1 Std_t_HD 0.911 1
3 1 geog1 Std_t_KL 0.957 1
4 2 sex Std_Duncan 0.987 1
5 2 sex Std_t_HD 0.991 1
6 2 sex Std_t_KL 1.00 1
7 3 agecode1 Std_Duncan 0.946 1
8 3 agecode1 Std_t_HD 0.953 1
9 3 agecode1 Std_t_KL 0.987 1

Step 8: Visualise the distance metrics
 plot(p)

19

3.5 RUNNING 3B_R-indicator.R

The file computes the overall R-indicator. Users can also proceed with computing partial R-
indicators by category level, and variable level. The procedure can be computationally
extensive. This is noted in the relevant section, so that users can allow some time to execute
the code.

On this example, we will prepare the sample and population distributions and calculate an R-
indicator for 5 variables: geog1 (6), sex (2), agecode1 (14) and eth_cod5 (5) and econg (3).

As part of administrative data preparation, each of the variables should have their categories
numbered 1,2,3…. We will use these numbers instead of the original names of the categories
because it will enable us to do loops through the data. This is to facilitate building design matrix
using dummy variables.

Along with administrative data, we also need benchmark data from Census. Assuming users
have no access to Census data, we replace Census with weighted sample counts. The auxiliary
data file contains these weighted sample counts.

As such, we will read in both administrative and auxiliary data files separately and compute R-
indicators using matrix syntax in R. Due to the complexity of the procedure, we provide defined
functions that users can execute with ease in practice. Users can consult

20

Functions/2_Functions_R-indicators.R file for more details on the algorithm and
operationalisation.

Step 1: Prepare an Auxiliary data file

From the frequency table generated by using the weighted sample, we will prepare an auxiliary
data file to be used for R-indicator computation procedures. This auxiliary file is used as
benchmark. From the previous steps, we identified the population size of 1,116,350 (popsize =
1163650) from the weighted sample.

For R-indicator calculations, we need to compute meanpop by variables which are geography,
sex, age groups, ethnic groups, and economic activity status. Users can simply run the
function, fn_meanpop_auxiliary() to achieve this goal.

 load(file = "Output/04-RData/Weightedsample_freq_table.RData")
 load(file="Output/04-RData/var.RData")

 fn_meanpop_auxiliary()

Exerpts of the function is provided below to aid readers’ understanding.

 # Compute meanpop
 auxiliary <- freq_table %>%
 filter(oneway == 1) %>%
 group_by(by1) %>%
 mutate(meanpop = n / popsize) %>%
 ungroup() %>%
 dplyr::select(seq, count = n, by1,
 v, by2, meanpop, raw_n)

We first remove two-way and keep the one-way frequency table only. Then, by variable-level
(indicated by the variable, by1), we compute meanpop. As seen before, the count of each
category is stored in n. The meanpop is obtained by dividing n by popsize. For example, the
value of meanpop for first category of geog1 is calculated as 113250/1163650 = 0.0973, and
the second category of geog1 is 148400/1163650 = 0.1275 and so on.

Let’s look at the intermediate Auxiliary data. We can see the count of each variable (by1) and
the sub-category (by2) for five variables. The population size is indicated as 1163560 (shown in
the first row, under count column).

 print(auxiliary)

seq count by1 v by2 meanpop raw_n type
1 1 1163650 total 0 00 1.000000000 0 wtsample
2 2 113250 geog1 1 01 0.097323078 2265 wtsample
3 3 148400 geog1 1 02 0.127529756 2968 wtsample
4 4 137450 geog1 1 03 0.118119710 2749 wtsample
5 5 175100 geog1 1 04 0.150474799 3502 wtsample
6 6 92300 geog1 1 05 0.079319383 1846 wtsample
7 7 497150 geog1 1 06 0.427233275 9943 wtsample

21

8 8 565350 sex 2 01 0.485841963 11307 wtsample
9 9 598300 sex 2 02 0.514158037 11966 wtsample
10 10 84600 agecode1 3 01 0.072702273 1692 wtsample
11 11 93300 agecode1 3 02 0.080178748 1866 wtsample
12 12 111200 agecode1 3 03 0.095561380 2224 wtsample
13 13 124250 agecode1 3 04 0.106776092 2485 wtsample
14 14 118200 agecode1 3 05 0.101576935 2364 wtsample
15 15 99950 agecode1 3 06 0.085893525 1999 wtsample
16 16 95800 agecode1 3 07 0.082327160 1916 wtsample
17 17 95600 agecode1 3 08 0.082155287 1912 wtsample
18 18 78450 agecode1 3 09 0.067417179 1569 wtsample
19 19 67600 agecode1 3 10 0.058093069 1352 wtsample
20 20 57950 agecode1 3 11 0.049800198 1159 wtsample
21 21 50650 agecode1 3 12 0.043526834 1013 wtsample
22 22 42250 agecode1 3 13 0.036308168 845 wtsample
23 23 43850 agecode1 3 14 0.037683152 877 wtsample
24 24 1083250 eth_code5 4 01 0.930907060 21665 wtsample
25 25 10450 eth_code5 4 02 0.008980364 209 wtsample
26 26 45600 eth_code5 4 03 0.039187041 912 wtsample
27 27 16300 eth_code5 4 04 0.014007648 326 wtsample
28 28 8050 eth_code5 4 05 0.006917888 161 wtsample
29 29 691300 econg 5 01 0.594078976 13826 wtsample
30 30 28250 econg 5 02 0.024277059 565 wtsample
31 31 444100 econg 5 03 0.381643965 8882 wtsample

Now, we prepare the data to build design matrix using dummy variables. To do so, from the
total number of categories for each variable, we need to remove the last category of each
categorical variable (group_by(by1)). The last category is defined by max(by2)and removed
accordingly. The first row (seq == 1) is not subject to this procedure and kept in the data. As
shown in the code below, we keep rows if lastcat == 0, while filtering out cases which are
the last category. We then drop the indicator for the last category (dplyr::select(-
c(lastcat_, lastcat))). Here, we explicitly instruct R to use dplyr package to access
select function8.

 col_auxiliary <- auxiliary %>%
 group_by(by1) %>%
 mutate(
 lastcat_ = ifelse(by2 == max(by2), 1, 0),
 lastcat = ifelse(seq == 1, 0, lastcat_)
) %>%
 filter(lastcat == 0) %>%
 dplyr::select(-c(lastcat_, lastcat)) %>%
 ungroup()

8 This is to avoid warning messages from R when R searches for a particular function from two different
packages.

22

Notice that from 5 variables, geog1 (6), sex (2), agecode1 (14) and eth_cod5 (5) and econg (3),
we now have 1+(nvar-1) for each variable so here it is 1+5+1+13+4+3=26 rows. We create a
macro, numcat to store this information on the total row.

nrow(col_auxiliary)

[1] 26

numcat <- nrow(col_auxiliary)
numcat

[1] 26

To inspect the setup on dummy variables (to be created later), let’s produce a cross-tabulation
by by1 and by2.

 dummychk <- col_auxiliary
 dummychk %>% tabyl(by1, by2)

 00 01 02 03 04 05 06 07 08 09 10 11 12 13

 agecode1 0 1 1 1 1 1 1 1 1 1 1 1 1 1

 econg 0 1 1 0 0 0 0 0 0 0 0 0 0 0

 eth_code5 0 1 1 1 1 0 0 0 0 0 0 0 0 0

 geog1 0 1 1 1 1 1 0 0 0 0 0 0 0 0

 sex 0 1 0 0 0 0 0 0 0 0 0 0 0 0

 total 1 0 0 0 0 0 0 0 0 0 0 0 0 0

All look good. At this stage, we keep meanpop only, dropping other columns, and print meanpop
in a single column (column vector). This column will be transposed before we save it as row
vectors. Before reshaping the data, we carefully inspect the values of meanpop.

 # Print the column vector, meanpop
 print(col_auxiliary)

A tibble: 26 x 1
meanpop
<dbl>
1 1
2 0.0973
3 0.128
4 0.118
5 0.150
6 0.0793
7 0.486
8 0.0727
9 0.0802
10 0.0956
11 0.107
12 0.102
13 0.0859

23

14 0.0823
15 0.0822
16 0.0674
17 0.0581
18 0.0498
19 0.0435
20 0.0363
21 0.931
22 0.00898
23 0.0392
24 0.0140
25 0.594
26 0.0243

Step 2: Reshape and save benchmark data as row vectors

We use t(col_auxiliary) to transpose and tidy the reshaped data. We then generate ttt as
an indicator of benchmark data. We use this indicator for merging with the administrative data
later. Save the data as popmean_row_vector.

Transpose to arrange in row vector format.
 temp <- t(col_auxiliary)
 temp <- as.data.frame(temp)
 row.names(temp) <- 1:nrow(temp)

generate merge id, ttt.
 temp$ttt <- 0

Rename variables "popmean1- popmean26"
 names(temp) <- c(paste0("popmean", 1:numcat), "ttt")

SAVE
 popmean_row_vector <- temp

Let’s see the row vector names, “popmean1- popmean26” and ttt.

 names(popmean_temp)

[1] "popmean1" "popmean2" "popmean3" "popmean4" "popmean5" "popmean6
"
[7] "popmean7" "popmean8" "popmean9" "popmean10" "popmean11" "popmean1
2"
[13] "popmean13" "popmean14" "popmean15" "popmean16" "popmean17" "popmean1
8"
[19] "popmean19" "popmean20" "popmean21" "popmean22" "popmean23" "popmean2
4"
[25] "popmean25" "popmean26" "ttt"

 popmean_temp[, 1:5]

24

popmean1 popmean2 popmean3 popmean4 popmean5
1 1 0.09732308 0.1275298 0.1181197 0.1504748

Now, our benchmark data preparation is completed.

Step 3: Declare variables in administrative data

The next step is to declare variables to be used for computing the R-indicator. These variable
names should be from the administrative data. As mentioned earlier, users may skip this part if
earlier defined var is unchanged and consistent throughout benchmark data and
administrative data. In the provided example file, we save var object and load it, rather than
defining at each stage.

Follow the instructions if users need to declare here. Users can define their own variables and
save as a macro, var. For instance, users may use four variables and define as below.

var <- c(“geog1”, “sex”, “agecode1”, “econg”)

For demonstration, we use five variables for R-indicator calculations and declared as such.

Customise as needed.
var <- c("geog1", "sex", "agecode1",
 "eth_code5", "econg")
var

[1] "geog1" "sex" "agecode1" "eth_code5" "econg"

End of custom variables.

This concludes steps 1 through 3. Users can customise some setups up to this point.

Step 4: Define macro variables

Along with the defined variables, we need to ensure macro variables are generated correctly.
These macro variables are not designed to customise and designed to run without altering the
code.

var

variablenum

maxvar

popsize

The total number of variables and the total number of categories of each categorical variables
will be stored in a macro called variablenum and maxvar. We use var macro, as we defined
earlier, to derive these two macros.

variablenum <- length(var) # No need to customise
maxvar <- length(var) # No need to customise

25

variablenum ; maxvar

[1] 5

[1] 5

Earlier, we also generated popsize to feed the information on the (total observation) size of
the the benchmark data to the programme. The remaining macros, such as respop, piinv and
rrate, will be automatically generated by the pre-defined functions.

respop

piinv

rrate

respop is the (sample) size of the administrative data. piinv refers to the inverse pi. rrate is
computed by resppop/popsize.

Step 5: Compute R-indicators

Once steps 1 through 4 are completed, we are set to carry out computing R-indicators. These
procedures are automated via pre-defined functions using complex matrix and data
management syntax. Please note that some procedures are computationally intensive.

We first open the corresponding administrative data, and notice the number of rows is
1,033,664.

 aa <- read_csv("public_release_admin.csv")

Rows: 1033664 Columns: 6
-- Column specification --

Delimiter: ","
dbl (6): person_id, geog1, sex, agecode1, eth_code5, econg

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this m
essage.

 nrow(aa) # 1033664

[1] 1033664

We need several empty objects to hold data to get the functions to work as intended. Note that
we have five functions that permit us to compute overall R-indicators, along with additional
functions for obtaining partial R-indicators. Each function will generate objects including vvv,
pop_respmean, des_pop_respmean, gh, and R_indicators as indicated in the function name.
The partial R-indicators can be found in the data object, partial.

26

 df <- NULL
 between <- NULL
 partial <- NULL
 partialtemp <- NULL
 fn_r_indicator_1_vvv()
 fn_r_indicator_2_pop_respmean()
 fn_r_indicator_3_des_pop_respmean()
 fn_r_indicator_4_gh()
 fn_R_indicators()

 # Partial R-indicators
 fn_r_indicator_partialtemp()
 fn_r_indicator_domain_order_partial()

Let’s go over one function at a time.

The utility of fn_overall_r_indicator_1_vvv() is to build design matrix. Starting
with ensuring that the admin data only contains the declared variables and factorise
them, the function defines macro variables, resppop and rrate using the data object,
aa. To prepare for design matrix, the code creates dummy variables, using
fastDummies R library package. Once all dummy variables generated, we need to
remove the last category. As such, the function detects the categories of each
variable and drops the last category.

Let’s see the vvv object, which contains the design matrix with weights. The weights are
calculated by the inverse of rrate (finalwgt = 1/rrate). The last five columns are printed
below.

 # fn_overall_r_indicator_1_vvv()

 from <- ncol(vvv)-4
 vvv[1:8, from: ncol(vvv)]

A tibble: 10 x 5
des24 des25 des26 finalwgt piinv
<int> <int> <int> <dbl> <dbl>
1 0 1 0 1.13 1
2 0 1 0 1.13 1
3 0 1 0 1.13 1
4 0 1 0 1.13 1
5 0 1 0 1.13 1
6 0 0 0 1.13 1
7 0 0 0 1.13 1
8 0 1 0 1.13 1

The fn_overall_r_indicator_2_pop_respmean() prepares the distributions of the
administrative data. Using the data object, vvv, we obtain weighted sample counts and
produces a row vector called respmean_row_vector. Merging the corresponding

27

popmean_row_vector from the benchmark data we prepared at the step 2 earlier, the function
combines both mean vectors from the two data sources.

The combined mean vectors are stored at the pop_respmean data object. We will inspect the
last five columns.

 # fn_overall_r_indicator_2_pop_respmean()

 from <- ncol(pop_respmean)-4
 pop_respmean[, from: ncol(pop_respmean)]

respmean25 respmean26 finalwgt piinv ttt
1 0.5896214 0.02252997 1.125753 1 0

The function, fn_overall_r_indicator_3_des_pop_respmean(), allows us to combine the
design matrix with the pop_respmean. We store the data at des_pop_respmean.

 # fn_overall_r_indicator_3_des_pop_respmean()

 names(des_pop_respmean)

[1] "des1" "des2" "des3" "des4"
[5] "des5" "des6" "des7" "des8"
[9] "des9" "des10" "des11" "des12"
[13] "des13" "des14" "des15" "des16"
[17] "des17" "des18" "des19" "des20"
[21] "des21" "des22" "des23" "des24"
[25] "des25" "des26" "finalwgt" "piinv"
[29] "popmean1" "popmean2" "popmean3" "popmean4"
[33] "popmean5" "popmean6" "popmean7" "popmean8"
[37] "popmean9" "popmean10" "popmean11" "popmean12"
[41] "popmean13" "popmean14" "popmean15" "popmean16"
[45] "popmean17" "popmean18" "popmean19" "popmean20"
[49] "popmean21" "popmean22" "popmean23" "popmean24"
[53] "popmean25" "popmean26" "respmean1" "respmean2"
[57] "respmean3" "respmean4" "respmean5" "respmean6"
[61] "respmean7" "respmean8" "respmean9" "respmean10"
[65] "respmean11" "respmean12" "respmean13" "respmean14"
[69] "respmean15" "respmean16" "respmean17" "respmean18"
[73] "respmean19" "respmean20" "respmean21" "respmean22"
[77] "respmean23" "respmean24" "respmean25" "respmean26"
[81] "seq" "responsesamp1"

 from <- ncol(des_pop_respmean)-4
 des_pop_respmean[1:6, from: ncol(des_pop_respmean)]

A tibble: 6 x 5
respmean24 respmean25 respmean26 seq responsesamp1
<dbl> <dbl> <dbl> <int> <dbl>
1 0.0139 0.590 0.0225 1 1
2 0.0139 0.590 0.0225 2 1

28

3 0.0139 0.590 0.0225 3 1
4 0.0139 0.590 0.0225 4 1
5 0.0139 0.590 0.0225 5 1
6 0.0139 0.590 0.0225 6 1

In the fn_overall_r_indicator_4_gh(), we compute the difference from the mean vectors
and the weight variables. Exerpts of the code from the function below show that the
differences are stored in rsam and psam. By adding rsam and psam to the intermediate data
object, des_pop_respmean, we obtain the gh data. This concludes the pre-matrix preparation
part.

 # use df for programming.
 df <<- data.frame(des_pop_respmean)

 # Prep for loop.
 des_col <<- c(paste0("des" , 1:numcat))
 respmean_col <<- c(paste0("respmean", 1:numcat))
 popmean_col <<- c(paste0("popmean" , 1:numcat))

 des <<- df[, des_col]
 respmean <<- df[, respmean_col]
 popmean <<- df[, popmean_col]

 rsam <<- des - respmean
 psam <<- des - popmean
 temp <<- data.frame(rsam, psam)

 # Rename variables
 colnames(temp) <<- c(paste0("rsam", 1:numcat),
 paste0("psam", 1:numcat))
 # Combine
 gh <<- cbind(des_pop_respmean, temp)

The fn_R_indicators() uses matrix syntax to calculate propensity scores, prior to computing
R-indicators. We calculate two kinds of propensity scores – one that used only population
information (roipop, or prop_pop) and the other which used a mixture of the response data
and the population information (roimix, or prop_mix).

In terms of partial R-indicators, we demonstrate using prop_mix. Running
fn_r_indicator_partialtemp() users can yield partial R-indicators at the variable level and
at the category level. The function, fn_r_indicator_domain_order_partial() helps us to
organise domains.

 fn_r_indicator_partialtemp()
 fn_r_indicator_domain_order_partial()
 # View(partial)

29

Step 6: Save in Excel and inspect

At this stage, users can inspect the output accordingly. Let’s have a look. Here, we can see the
overall R-indicator is estimated as 0.496 based the administrative data (N=1033664). Looking at
the variable-level R-indicator (see rows 4-8), geog1 was seen to have the greatest R-indicator
(0.04) compared to econg (0.0002).

 partial[1:17, c(1:2, 4, 8:10)]

seq domain R_indicator count n_cat domain_n
1 1 Overall 0.4960263148 NA <NA> NA
2 2 mrphatall 0.9597768609 NA <NA> NA
3 3 resppop 1033664.0000000000 NA <NA> NA
4 4 geog1 0.0442418275 NA <NA> NA
5 5 sex 0.0004983014 NA <NA> NA
6 6 agecode1 0.0152841196 NA <NA> NA
7 7 eth_code5 0.0000296805 NA <NA> NA
8 8 econg 0.0002117090 NA <NA> NA
9 9 des1 NA 0 1 0
10 10 geog1_1 0.0879501347 137993 1 1
11 11 geog1_2 -0.0192794816 124051 2 1
12 12 geog1_3 0.0219039079 131176 3 1
13 13 geog1_4 -0.0366161292 139867 4 1
14 14 geog1_5 0.1396946734 142304 5 1
15 15 geog1_6 -0.1216543425 358273 6 1
16 16 sex_1 -0.0162005503 489228 1 2
17 17 sex_2 0.0153571986 544436 2 2

30

Step 7: Visualising using scatterplots

The visualisation of R-indicator by the variable level is shown as an example:

 plot(p1)

And for R-indicator by the category-level:

 plot(p2)

31

This concludes the manual. Thank you for taking the time reading the material. Please get in
touch with any query or errata at fanfurcada@gmail.com.

If you need technical support, please consult the following Troubleshooting Q & A section.

4. Troubleshooting Questions and Answers

4.1 Questions and Answers

How do I know where to customise the code to suit my needs?

Unless indicated as “Customise as needed”, users can run the code as it is. Please consult
each code file.

How to use Starting path in multiple machines?

If users plan to use different machines, simply by changing the “starting path”, users can carry
out the analysis with minimal disruption. To achieve this, please ensure to use the consistent
master project folder name.

What are the commonly used commands?

Most commonly used commands in the tidyverse package are:

 arrange : sort variables.
 bind_rows: append multiple dataframes.
 mutate : manipulate variables, and
 create new variables based on old variables.
 select : order, and keep(drop) variables of interest.
 shell.exec: launch a software and opens the target file (Windows PC only)

How to free up memory space and speed up RStudio?

You can remove objects that you no longer need.

 # To remove objects except for certain objects
 ls()

 keepobjectslist <- c("a", "b", "c")
 rm(list = ls()[!ls() %in% keepobjectslist])
 ls()

I get error messages when a pre-defined function is used.

Users can inspect the codes used in the function, and identify the issues. It is recommended
NOT edit the function file directly, as the functions are used repeatedly, and the interlinked
sections may not run as expected. Where preferable, users may copy the codes in the function,
and use locally with minor tweaks.

mailto:fanfurcada@gmail.com

32

How do I modify pre-defined functions?

Users can modify 1_Functions and 2_Functions_R-indicators.R under Functions folder.

1_Functions.R
fn_output_folder_path <- function() {

 currentdate <<- Sys.Date()
 txtpath <<- "Output/01-Txt/"
 figpath <<- "Output/02-Figure/"
 xlsxpath <<- "./Output/03-ExcelOutput/"
 Rdatapath <<- "Output/04-RData/"
}

We can check how the output folder names are set as path to save the results during the
analytical process.

fn_output_folder_path()

Let’s run the function. We can see that xlsxpath is set as "./Output/03-ExcelOutput/".

xlsxpath

[1] "./Output/03-ExcelOutput/"

Let’s customise the xlsxpath, by renaming the folder name. If we customise 1_Functions.R
file, we can edit the information enclosed in the brackets. Notice that we use <<- with
functions so that the object created by a function will exist in the global R environment. This is
very important.

Alternatively, we could ignore the pre-defined function and just write relevant lines of code and
keep it in the main R script file. For instance, we could put output_folder_path at the top of the
2_Prep_Wtsample_Freq_Table.R. Here, we edited the xlsxpath. Notice that
fn_output_folder_path <- function() { } is removed.

 xlsxpath_2 <- "./Output/03-Excel/"

 xlsxpath_2

[1] "./Output/03-Excel/"

 #H---------------------------------------
 ## > Step 1. Load Census data
 #H--------------------------------------
 # load("pop_u_short_before_sim_5vars.RData")

Notice that we use <-. Using <<- is not necessary here. Users can remember the usage of <-
and can modify the functions as appropriate, should the function incur errors.

33

What approaches are taken in programming?

When loop is used, base R functions were used (table, tapply, etc). For data manipulation,
tidyverse package was used extensively. This strategy is partly to improve readability of the
code.

To enhance users’ workflow, output files are programmed to launch using the pre-defined
functions.

Can I ignore Warning messages?

Some packages alert users with compatibility issues arising from old version. These can be
ignored. For example,

 library("fastDummies")
 Warning message:
 package 'fastDummies' was built under
 R version 4.1.2

 library(rlist)
 Warning message:
 package 'rlist' was built under R version 4.1.2

What version of R is used?

Tested with Windows PC. R version used: 4.1.1 RStudio version: RStudio 2022.12.0 Build 353.

4.2 Troubleshooting

Unused argument error

For example, sim %>% select(geog1) the select command can cause an error:

Error in select(., geog1) :
 unused arguments (geog1)

This maybe due to the conflict in packages.

The error can be fixed by adding the name of the package used, dplyr, explicitly. sim %>%
dplyr::select(geog1)

I get errors when computing…

Please inspect zero cells, and ensure 0 (numeric value) is entered for n and perc, as well as
admin_n and admin_perc. Errors may occur with NA coding and data attributes(character,
factor, numeric).

34

I am experiencing slowness in computation.

R can be not responsive if memory is full. Please identify bottlenecks and remove them. It
may be due to certain commands. For example, View(object) command could take a while if
the object is huge in size. Unless one should inspect the data, suppress the View command to
expedite the computation where possible.

It can also be the case that for loop functions can be slow as well. In some instances, removing
objects may help as this procedure can free up memory space. See above commonly used
commands for more information.

Error: cannot allocate vector of size xxxx.x Gb

If matrix symbols have entered mistakenly, R shows an error message like this. Please double
check whether there are any mistakes. For instance, one may have typed a*b instead of a%*%b.
Users can type memory.limit() to check the current memory limit and increase as necessary.

References

Bianchi, Annamaria, Natalie Shlomo, Barry Schouten, Damião N. Da Silva, and Chris Skinner.
‘Estimation of Response Propensities and Indicators of Representative Response Using
Population-Level Information’. Survey Methodology 45 (2) (2019): 217–47.

Duncan, Otis Dudley, and Beverly Duncan. ‘A Methodological Analysis of Segregation Indexes’.
American Sociological Review 20, no. 2 (1955): 210–17. https://doi.org/10.2307/2088328.

R Core Team (2022). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Schouten, Barry, Fannie Cobben, Jelke Bethlehem. ‘Indicators for the Representativeness of
Survey Response.. Survey Methodology 35(1) (2009): 101 – 113.

Schouten, Barry, and Natalie Shlomo. ‘Selecting Adaptive Survey Design Strata with Partial R-
indicators’. International Statistical Review 85(1) (2017): 143-163.

Citation

Please cite this work as:

Kim, Sook & Shlomo, Natalie (2023). “Quality Indicators for Administrative Data User Manual
For R Package on GitHub, version 1.2”, available at https://github.com/sook-tusk/qualadmin

https://doi.org/10.2307/2088328.
https://www.r-project.org/
https://github.com/sook-tusk/qualadmin

	Contents
	1. Project aims and objectives
	2. Quality indicators
	2.1 Distance Metrics
	2.2 R-indicators

	3. User Guide on the R-package
	3.1 Download and inspect the contents
	3.2 Launch RStudio and get ready
	3.3 RUNNING 2_Prep_Wtsample_Freq_Table.R
	3.4 RUNNING 3A_Distance_Metrics.R
	3.5 RUNNING 3B_R-indicator.R

	4. Troubleshooting Questions and Answers
	4.1 Questions and Answers
	4.2 Troubleshooting

	References
	Citation

