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1. Project aims and objectives 

The Office for National Statistics (ONS) have strategic priorities on embedding and advancing 
the use of administrative data into their official statistics processes. Their immediate priority is 
to use administrative data in the quality assurance of the 2021 census and to develop the 
production of administrative-based population estimates (ABPEs). A more long-term priority is 
the Population Statistics Transformation Programme which will feed into a recommendation to 
Government due in 2023 on the future of census and population statistics. In particular, the 
objective is to create population characteristic estimates from administrative and integrated 
data sources.  

Motivated by these initiatives, the University of Manchester was successfully awarded an ESRC 
grant from April 2021 to January 2023 titled: ‘Methodological Advancements on the Use of 
Administrative Data in Official Statistics’ (ES/V005456/1). The funded research enabled  
collaborations with the ONS on researching and developing methods  to enhance the use of 
administrative data in official statistics.    

This user manual concerns the sub-project related to developing a quality framework and 
quantitative measures to assess representativeness and coverage for a single administrative 
data source.  We use univariate and bivariate distributions obtained from high- quality large 
random probability surveys (such as the UK Annual Population Survey) and compare them to 
distributions in the administrative data on a common set of variables based on distance metrics 
between these distributions.  In addition, we developed a Representativity (R-) Indicator that is   
designed for quantifying the representativeness of population groups in the administrative 
data.  Section 2 describes the methods underpinning the R-code hosted in GitHub and Section 3 
describes the R-code with a running example of its outputs.  We conclude in Section 4 with 
troubleshooting questions and answers. 

 

2.   Quality indicators 

In the R-code on GitHub we focus on quality indicators to identify errors arising from coverage 
and representativeness of a single administrative data source.  It is vital that statistical agencies 
have good quality indicators to ensure the fit of administrative data to the population and to 
identify those sub-groups that are missing or over-covered, especially when the administrative 
data contributes to an integrated dataset for multisource processing or to quality assure other 
data sources, such as surveys and censuses.   
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2.1  Distance Metrics   

In this section we compare distributions obtained from the administrative data with external 
population auxiliary information, either obtained directly from a census or estimated from a 
large probability-based random survey.  

Denote variable 𝑣 having categories ℎ, ℎ = 1, 2 … 𝐻 in the administrative dataset having M 
individuals.   Let ∆ℎ,𝑖

𝑣   be the 0-1 indicator for individual 𝑖 being a member of category ℎ in 

variable 𝑣.  We can then calculate the counts for category ℎ : 𝑚ℎ
𝑣 = ∑ ∆ℎ,𝑖

𝑣  𝑀
𝑖=1 and note that 

∑ 𝑚ℎ
𝑣 = 𝑀𝐻

ℎ=1  .  We can also obtain the probability distribution of variable 𝑣 having category 

ℎ, ℎ = 1, 2 … 𝐻   and calculate:  𝑝ℎ
𝑣 =

𝑚ℎ
𝑣

𝑀
.  We note that the variable 𝑣 can also represent a 

cross-tabulation of two or more variables, for example age group × sex.   

Now assume we have equivalent estimates of these distributions from a census, or alternatively 
from a large probability-based random sample of size 𝑛 where every individual 𝑖 in the sample 
has an associated survey weight 𝑤𝑖 . The survey weights typically are calibrated to known 
population benchmarks and hence sum to the known population size 𝑁. In this case, 𝑛ℎ

𝑣 =

∑ 𝑤𝑖∆ℎ,𝑖
𝑣  𝑛

𝑖=1 and ∑ 𝑛ℎ
𝑣 = 𝑁𝐻

ℎ=1 .    Moreover, the equivalent distribution is 𝑞ℎ
𝑣 =

𝑛ℎ
𝑣

𝑁
. 

The entropy measures the uniformity of the probability distributions and hence can be 
compared when calculated on the administrative data distribution versus  the population 
distribution. The formula for the entropy on the probability distribution  {𝑝ℎ

𝑣, ℎ = 1, … , 𝐻}  is:   -
∑ 𝑝ℎ

𝑣
ℎ 𝑙𝑜𝑔(𝑝ℎ

𝑣) and similarly on the probability distribution {𝑞ℎ
𝑣, ℎ = 1, … , 𝐻} . 

 We can now use a variety of distance metrics to assess deviations between the 
distributions {𝑝ℎ

𝑣, ℎ = 1, … , 𝐻}   and   {𝑞ℎ
𝑣, ℎ = 1, … , 𝐻} . In this research, we assess three 

distance metrics: the Indicator of Dissimilarity (Duncan and Duncan, 1955), Hellinger’s Distance 
(HL) and the Kullback-Leibler divergence (KL). The formula for the three distance metrics is 
given in Table 1.  

Table 1: Distance metrics between the distribution calculated from the administrative data 
 {𝑝ℎ

𝑣, ℎ = 1, … , 𝐻}  and the distribution from the population {𝑞ℎ
𝑣, ℎ = 1, … , 𝐻}  on variable 𝑣 

Distance Metrics Formula Standarize 

Indicator of Dissimilarity (ID) 1

2
∑ |𝑝ℎ

ℎ
− 𝑞ℎ| 

1-ID 

Hellinger’s Distance (HL) 1

√2
√∑ (√𝑝ℎ − √𝑞ℎ)

2

ℎ
 

1-HL 
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Kullback-Leibler Divergence 
(KL) 

∑ 𝑝𝑘
ℎ

𝑙𝑜𝑔 (
𝑝ℎ

𝑞ℎ
)   1-KL 

 

There are subtle differences between these distance metrics. For example, Hellinger’s Distance 
places more weight on the smaller proportions compared to the larger proportions whereas the 
Indicator of Dissimilarity treats all proportions equally. More work is needed on standardizing 
the distance metrics into meaningful quality measures. We have yet to determine which 
distance metric should be used and therefore propose to include all of them in the R-code. This 
will facilitate more empirical work for future recommendations.   

 

2.2 R-indicators 

The R-indicator and its related partial R-indicators were originally designed to assess the 
representativeness of responses from a survey and are particularly useful as an objective 
function in the optimization of adaptive survey designs (Schouten, et al. 2009, Schouten and 
Shlomo, 2017). The R-indicators measure the contrast between those who are missing and not 
missing in the data and identify those groups that are not represented in the data. Here, we 
develop the R-indicator and partial R-indicators to assess the representativeness and coverage 
of an administrative dataset compared to a target population. Recent research by Bianchi, et 
al. (2019) adapts the R-indicator to the case where only population-based auxiliary information 
are available instead of sample-based frame information. We draw upon this research and 
utilize population-based auxiliary information where the population auxiliary information is 
obtained by weighted survey counts from a large probability-based random sample. 

To calculate the population-based R-indicator, denote the response indicator 𝑟𝑖 equal to 1 for 
all units in the administrative dataset. We have information available on the values 𝒙𝒊 =
(𝑥1,𝑖, 𝑥2,𝑖, … , 𝑥𝐾,𝑖)

𝑇 of a vector of 𝐾 auxiliary variables X, for example, sex, age group, 
geographical region, ethnic minority group and employment status. Therefore, each 𝑥𝑘,𝑖 is a 
binary indicator variable. We also assume that values of 𝒙𝒊 are observed for all individuals in 
the administrative dataset so that  {𝑥𝑖; 𝑖 ∈ 𝑟} is observed.  

Assume we know 𝒙𝒊 at the aggregate level: the population total ∑ 𝒙𝒊𝑈  and population cross-
products ∑ 𝒙𝒊𝑈 𝒙𝒊

𝑻 . This information is known as the population–based auxiliary information.  If 
this information is not available at the population level we can estimate the aggregates and cross-
products using a large probability-based random sample, denoted 𝑠, where each individual 𝑖 in 
the sample has a survey weight 𝑤𝑖. The estimated population-based auxiliary information is then:   
∑ 𝑤𝑖𝒙𝒊𝑠  and ∑ 𝑤𝑖𝒙𝒊𝒙𝒊

𝑻
𝑠 .  We also know the overall total in the population, denoted by 𝑁. 

 

Response propensities are defined as the conditional expectation of the response indicator 
variable 𝑟𝑖 given the values of specified variables: 𝜌𝑖 ≡ 𝜌𝑋(𝒙𝒊) . In the population-based setting 
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we model the response propensities under an identity link function where the true response 

propensities satisfy: 𝜌𝑖 = 𝒙𝒊
𝑻𝜷, 𝑖 ∈ 𝑈 . For the linear probability model, the estimate of 𝜌𝑖  in the 

sample-based scenario is given by: �̂�𝑖
𝑂𝐿𝑆 = 𝒙𝒊

𝑻(∑ 𝑑𝑖𝒔′ 𝒙𝒊𝒙𝒊
𝑻)−𝟏 ∑ 𝑑𝑖𝒔′ 𝒙𝒊𝑟𝑖  

  , 𝑖 ∈ 𝑠′ , where 𝑑𝑖 is 
the design weight and  𝑠′ denotes the sample under analysis.   

 

In the case of population-based auxiliary information where we know both population totals 
and cross-products, we note that ∑ 𝑑𝑖𝒙𝒊𝑠′  and ∑ 𝑑𝑖𝒙𝒊𝑠′ 𝒙𝒊

𝑻 are unbiased estimates for ∑ 𝒙𝒊𝑈  
and ∑ 𝒙𝒊𝑈 𝒙𝒊

𝑻, respectively and that in large samples we may expect that ∑ 𝑑𝑖𝒙𝒊𝑠′ ≈ ∑ 𝒙𝒊𝑈  and 
∑ 𝑑𝑖𝒙𝒊𝑠′ 𝒙𝒊

𝑻 ≈ ∑ 𝒙𝒊𝑈 𝒙𝒊
𝑻. It follows that, in the population-based setting, we may approximate 

�̂�𝑖
𝑂𝐿𝑆 by �̂�𝑖

𝑃 = 𝒙𝒊
𝑻(∑ 𝒙𝒊𝒙𝒊

𝑻
𝑼 )−𝟏 ∑ 𝑑𝑖𝒙𝒊𝒓 , 𝑖 ∈ 𝑟  and we refer to the propensities as ‘participation’ 

propensities. Note that �̂�𝑖
𝑃 is computed only on the set of individuals in the administrative data.  

In addition, in our setting of assessing the representativeness in administrative data, the design 
weight 𝑑𝑖 is the inverse of the coverage weight:    𝑑𝑖 = [𝑀/𝑁]−1  where 𝑀 is the number of 
individuals in the administrative dataset. 

 

In the population-based setting, an estimator for the R-indicator is given by �̂��̂�𝑃 = 1 − 2�̂��̂�𝑃  

where �̂�
�̂�𝑃
2 =

𝑁

𝑁−1
{

1

𝑁
∑ 𝑑𝑖�̂�𝑖

𝑃
𝑟 − [

1

𝑁
∑ 𝑑𝑖]𝑟

2
} and �̂�𝑖

𝑃 is estimated as above. This estimator of the R-

indicator makes the estimator �̂�𝜌
2 linear in �̂�𝑖

𝑃 which provides an advantage for size bias 

adjustment computations (although given the large administrative datasets, a size bias 

adjustment is not needed). Furthermore, we use propensity weighting by �̂�𝑖
𝑃−1

 to adjust for 
coverage bias. The R-indicator measures the variation of the sub-group participation 
propensities. If the participation propensities are all equal and there is no variation in sub-group 
participation, the R-indicator would obtain a value of 1.   

 

The unconditional partial R-indicator measures the amount of variation of the participation 
propensities between the categories of a variable. The larger the between-category variation is, 
the stronger the relationship is and the stronger the impact of the variable on a lack of 
representativeness. As earlier, let 𝒙𝒌  be one of the components of the vector 𝑿. The variable 𝒙𝒌  
is categorical and assume it has 𝐻 categories. Let 𝑚ℎ denote the weighted respondent size in 
category ℎ in the administrative data, for ℎ =  1, 2, . . . , 𝐻. That means 𝑚ℎ = ∑ 𝑑𝑖∆ℎ,𝑖𝑖𝜖𝑟   where 

∆ℎ,𝑖 is the 0-1 indicator for participating unit 𝑖 being a member of category ℎ and ∑ 𝑚ℎ = 𝑁𝐻
ℎ=1  

given the definition of 𝑑𝑖 as the inverse coverage weight. Define �̂̅�ℎ the average of the 
participation propensities in category ℎ of 𝒙𝒌  for the   units in the administrative dataset and 

�̂̅� the overall average participation probability based on the estimated population-based 

participation propensities �̂�𝑖
𝑃 . The estimate for the unconditional partial R-indicator for variable 

𝒙𝒌 is: 𝑅𝑈(𝒙𝒌) = √
1

𝑁
∑ 𝑚ℎ(�̂̅�ℎ − �̂̅�)2𝐻

ℎ=1 . The upper bound of the unconditional partial R- 

indicator is 0.5. The larger the value of the partial R-indicator, the stronger the association of the 
variable with a lack of representativeness in the administrative dataset. By computing and 
comparing the unconditional partial indicators for a set of variables it can be established for 
which variables the relationships are strongest. The unconditional partial R-indicator at the 
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category level ℎ for variable 𝒙𝒌  is 𝑅𝑈(𝒙𝒌
𝒉) = √

𝑚ℎ

𝑁
 (�̂̅�ℎ − �̂̅�) and can assume positive and 

negative values. Note that at the category-level, a negative sign represents under-representation 
and a plus sign represents over-representation.  

Finally, we note that when producing estimates from the administrative dataset, one should 

weight each individual 𝑖 by its inverse participation propensity: �̂�𝑖
𝑃−1

 to adjust for coverage bias 
in the estimates. 

  

3. User Guide on the R-package  

This package assumes that there is a Census file to obtain auxiliary population estimates and 
the administrative datasets under analysis.  However, in real settings we would not have a 
Census microdata to work with, rather we would have a large probability-based survey sample 
for estimating population distributions. Therefore, we draw a random sample from the Census 
microdata to support this scenario and obtain auxiliary population totals from weighted sample 
counts.   

3.1 Download and inspect the contents 

 3.1.1 Download 

Please visit the github site here: qualadmin link. Click on Code at the top-right corner. Then, 
click on Download ZIP to download to your local machine. 

Now, the downloaded folder needs to be placed in the designated location. We recommend 
users decide the appropriate Drive (C, D, E, F, etc) to house the downloaded contents. Then, 
create a new folder called admindata in File Explorer of your PC. Users can customise the new 
folder name as appropriate. This is your starting path. 

The screenshot showing starting path: 

 

 

Under this Starting path, F:/admindata, place the downloaded folder from GitHub. Extract the 
zip folder as necessary. 

https://github.com/sook-tusk/qualadmin
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As such, F:/admindata/qualadmin becomes the MASTER project folder. We’ll set it as working 
directory1 in RStudio later. 

3.1.2 Downloaded contents explained 

Example datasets 

We provide two example data sources. 

Data type File name 

Administrative public_release_admin.csv 

Census pop_u_short_public_release_5vars.Rdata 

Folders and R scripts 

Under F:\admindata\qualadmin folder, you’ll be presented with the following contents.  

 

The “User_manual” folder contains instructions on using the provided R code files. 

The users do not need to do anything with the folder titled “Functions”. These pre-defined 
functions are used to either enclose complex procedures or perform repetitive tasks including 
cleaning and computing quality indicators. There are two files containing pre-defined functions. 
There is no need to run function files independently. 

The functions will be automatically called in when the three main R script files are run: 
2_Prep_Wtsample_Freq_Table.R 3_A_Distance_Metrics.R 3_B_R-indicator.R 

The 2_Prep_Wtsample_Freq_Table.R file creates necessary data needed to compute distance 
metrics and R-indicators. The master file, 3_MASTER_Run_AB.R runs the above two main R 
script files, (3_A_Distance_Metrics.R 3_B_R-indicator.R) automatically in sequence. 

 

1 Notice that the terms, folder, directory, and path are used interchangeably in the user manual. 
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The first three files, 0_Custom_Path.R, 1_Create_Folders.R and 1_Install_Packages.R can 
be run to get ready to run the above main analysis files, as discussed in the following section. 

3.2 Launch RStudio and get ready 

3.2.1 Open the entire master folder in RStudio 

First, launch RStudio. Then, we need to open the entire folder F:/admindata/qualadmin 
where downloaded materials are located. 

Unfortunately, RStudio has no feature in the menu, but you could do so by accessing Files tab. 
Click on ... as shown below. 

 
Then, locate the master folder. In our example, it is F:/admindata/qualadmin. 

3.2.2 Set custom path 

Click open the R script file, 0_Custom_Path.R. Customise the starting path as needed, and set 
the path to indicate the master folder. The example code is: 

    # Starting path (CUSTOMISE PLEASE) 
    setwd("F:/admindata") 
 
    # Master project folder (USE AS IT IS) 
    setwd("./qualadmin") 
 
    # Check your current directory 
    getwd() 
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Please ensure to use a single forward slash / as above. R will print an error when backward 
slash \ is used in path. For instance, 

    setwd("F:\admindata)` 
    Error: '\a' is an unrecognized escape in character string starting ""F:\a
" 

Please ensure your working directory is set at the master project path throughout the 
analytical steps. 

3.2.3 Automatically create output folders 

The three main R script files 2_Prep_Wtsample_Freq_Table.R, 3_A_Distance_Metrics.R, 
3_B_R-indicator.R produce outputs. The outputs may be text, figure or in spreadsheet form. 
For the existing programmes to work, users need to create dedicated output folders. 

To do so, please click on the 1_Create_Folders.R file to open. Then run line by line. The 
resulting folder structure is provided here: 

 

 

3.2.4 Install packages 

The final preparation step is installing packages. Open 1_Install_Packages.R file, and run 
line by line. 

        #----------------------------------- 
        # Install packages (Run once) 
        #----------------------------------- 
         
        install.packages("ggplot2") 
        install.packages("tidyverse") 
         
        install.packages("car") 

Now, you’re all set to proceed with quality measures indicators! 
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3.3 RUNNING 2_Prep_Wtsample_Freq_Table.R 

This code file calculates the distributions of the weighted sample data. If the Census data or a 
weighted sample data are available, users consult 3.5.1 Use the existing sample data. For a 
scenario where these data are unavailable, users can generate the data as shown in 3.5.2 
Generate a weighted sample data.  

Open the 2_Prep_Wtsample_Freq_Table.R file. 

The top of the code file concerns checking the current directory, reading in the pre-defined 
functions in the R environment and loading relevant R libraries.  

    getwd() 
 
    # Run the code file with functions. 
    source("Functions/1_Functions.R") 
 
    # Define output file folders, path 
    fn_output_folder_path() 
 
    # Disable scientific notation. 
    options(scipen = 999) 
 
    library("tidyverse") # data manipulation 
    library("ggplot2")   # visualisation 
    library("janitor")   # cross-tabulation 
    library("readxl")    # read large csv file 
    library("writexl")   # export to Excel 

 

3.3.1 Use the existing weighted sample data 
• Step 1: Read in the data. 

    df  <- read_csv("custom_wtsample.csv") 
 
    dim(df)       # obs = 1163650 (example) 
    glimpse(df)   # Quick glance at the data 

Users decide which variables are to be used for tabulation. For example, users may 
identify the following five variables. 

    names(df)     # variable names 
 
    [1] "geog1"     "sex"       "agecode1"  "eth_code5" 
    [5] "econg" 
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• Step 2: Declare variables to be tabulated. Here, we declare all five variables using var 
object2. Users can customize the variable names here. By running the code below, R 
automatically saves the total number of variables, 5 in a macro called maxvar.  

      var <- c("geog1", "sex", "agecode1",  # Please customise 
            "eth_code5", "econg") 
      maxvar <- length(var)          # No need to customise 
      maxvar 
      [1] 5  

• Step 3: Obtain frequency table of categorical variables (count of categories).  

This procedure is to assess and calculate the distribution of categories in the weighted sample. 
Users can run the pre-defined function, fn_maxvar5_freq_table() to perform the task. The 
function automatically obtains counts and structure the output in long form, organised by each 
variable, and by its discrete category. In case of using four variables, users can use 
fn_maxvar4_freq_table() instead3.  

        fn_maxvar5_freq_table() 

• Step 4: Carry out checks to see if the calculated frequency tables are accurate. 

        freq_table[1:8, 1:9] 

##   seq twdigits      n          p oneway v   by1  by2 
## 1   1      101  113250 0.09732308      1 1 geog1  01 
## 2   2      102  148400 0.12752976      1 1 geog1  02 
## 3   3      103  137450 0.11811971      1 1 geog1  03 
## 4   4      104  175100 0.15047480      1 1 geog1  04 
## 5   5      105   92300 0.07931938      1 1 geog1  05 
## 6   6      106  497150 0.42723327      1 1 geog1  06 
## 7   7      201  565350 0.48584196      1 2   sex  01 
## 8   8      202  598300 0.51415804      1 2   sex  02 

When we printed the first 8 lines and 10 variables, we can see the count, n, and the 
corresponding proportion, p by each variable. The following code obtains the total 
observation size and confirms that the total proportion adds up to 1, for geog1 
variable. Here, the total observation size can be viewed as the population size. 

        # Check whether the total adds up to 1 
        sum(freq_table[1:6, "n"]) 

 

2 As the var object is treated as a global macro, the programme runs automatically using the information 
stored in global macro, and produces the results. Users can save var in a separate RData file and load it 
in each session, instead of repeating the procedure. 

3 We do not provide functions for the maximum variable size beyond five. In such cases, users can create 
their own functions by consulting the provided functions.  
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## [1] 1163650 

        sum(freq_table[1:6, "p"]) 

## [1] 1 

• Step 5: Rename and save. 

• Step 6: Export the output frequency table in Excel with the file name, 
Weightedsample_freq_table.xlsx. 

• Step 7: Save the R objects as RData. Done. 

3.3.2 Generate a weighted sample data 
• Step 1: Load a Census microdata. It is called pop_u_short_public_release_5vars in 

the provided example code. 

        #H--------------------------------------- 
        ##> 1. Load Census data 
        #H-------------------------------------- 
 
        load("pop_u_short_public_release_5vars.RData") 
        df  <- pop_u_short_public_release_5vars 
        dim(df)   # obs = 1163659 
        names(df) 

In our example Census data, we have 1,163,659 observations with five categorical 
variables including geography, sex, age groups, ethnic groups, and economic 
activity status. One can declare which variable to tabulate. Here, we declare all 
five variables using var object4. 

  var <- c("geog1", "sex", "agecode1", 
            "eth_code5", "econg") 

The description of categories, and distribution is shown below. 

Variable Category Description N (%) 

Total   1163659  

geog1 1 LA codes 116128 (10.0) 

 2 LA codes 150139 (12.9) 

 3 LA codes 137520 (11.8) 

 4 LA codes 170624 (14.7) 

 5 LA codes 90873 (7.8) 

 6 LA codes 498375 (42.8) 

 

4 As the var object is treated as global macro, the programme runs automatically using the information 
stored in global macro, and produces the results. 
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Variable Category Description N (%) 

sex 1 male 564905 (48.5) 

 2 female 598754 (51.5) 

agecode1 1 16-20 82426 (7.1) 

 2 21-25 94643 (8.1) 

 3 26-30 110296 (9.5) 

 4 31-35 120398 (10.3) 

 5 36-40 119393 (10.3) 

 6 14-45 101711 (8.7) 

 7 46-50 94209 (8.1) 

 8 51-55 100159 (8.6) 

 9 56-60 77799 (6.7) 

 10 61-65 65833 (5.7) 

 11 66-70 57305 (4.9) 

 12 71-75 51263 (4.4) 

 13 76-80 43678 (3.8) 

 14 81+ 44546 (3.8) 

eth_code5 1 White 1081812 (93.0) 

 2 Mixed/Multiple ethnic groups 10487 (0.9) 

 3 Asian/Asian British 46446 (4.0) 

 3 Black/African/Caribbean/Black British 16268 (1.4) 

 4 Other ethnic group 8646 (0.7) 

econg 1 In employment(FT, PT) 689140 (59.2) 

 2 Unemployed 27744 (2.4) 

 3 Out of workforce 446775 (38.4) 

Using this prior information on the population distribution (based on the Census), we 
can mimic the distribution in a random sample. See the next step. 

• Step 2: Then, we draw a random sample 1:50. 

• Step 3: From the randomly selected sample (1163659/50 = 23273), we then obtain 
frequency table of categorical variables (count of categories). Users can run the pre-
defined function, fn_maxvar5_freq_table() to perform the task. The function5 
automatically obtains counts and structure the output in long form, organised by each 
variable, and by its discrete category. 

 

5 We also provide fn_maxvar4_freq_table() for users who declare four categorical variables. We 
do not provide functions for the maximum variable size beyond five. In such cases, users can create their 
own functions by consulting the provided functions. 
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        fn_maxvar5_freq_table() 

This procedure is to assess and calculate the distribution of categories in a random 
sample (N = 23273). Based on the counts of the randomly selected sample, we 
multiply the counts by 50. One may wonder why we multiply. As we reduced the 
census sample by drawing a random sample by the 1:50 ratio, we need to convert the 
shrank sample back to the original size (with the priori distribution). This explains why 
we multiply by 50 (Weighted Sample N = 23273 * 50 = 1163650). This completes the 
process of generating weighted sample survey data. 

• Step 4: Carry out checks to see if the calculated frequency tables are accurate. 

        freq_table[1:8, 1:9] 

##   seq twdigits raw_n      n          p oneway v   by1 by2 
## 1   1      101  2265 113250 0.09732308      1 1 geog1  01 
## 2   2      102  2968 148400 0.12752976      1 1 geog1  02 
## 3   3      103  2749 137450 0.11811971      1 1 geog1  03 
## 4   4      104  3502 175100 0.15047480      1 1 geog1  04 
## 5   5      105  1846  92300 0.07931938      1 1 geog1  05 
## 6   6      106  9943 497150 0.42723327      1 1 geog1  06 
## 7   7      201 11307 565350 0.48584196      1 2   sex  01 
## 8   8      202 11966 598300 0.51415804      1 2   sex  02 

When we printed the first 8 lines and 10 variables, we can see the count, n, and the 
corresponding proportion, p by each variable. The following code obtains the total 
observation size and confirms that the total proportion adds up to 1, for geog1 
variable. Here, the total observation size can be viewed as the population size. 

        # Check whether the total adds up to 1 
        sum(freq_table[1:6, "n"]) 

## [1] 1163650 

        sum(freq_table[1:6, "p"]) 

## [1] 1 

• Step 5: Rename and save. 

• Step 6: Export the output frequency table in Excel with the file name, 
Weightedsample_freq_table.xlsx. 

• Step 7: Save the R objects as RData. Done. 

 

3.4  RUNNING 3A_Distance_Metrics.R 

To calculate distance metrics, we first obtain one-way, and two-way frequency tables of 
categorical variables, and calculates proportions of each sub-category by each data source. 
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Previously, we dealt with frequency tables for the weighted sample data. Here, we calculate 
distributions of administrative data. Next, we combine master (benchmark) and admin freq 
tables. Then, we create domains for quality indicators, and finally compute distance metrics as 
part of quality indicators. We offer three different types of distance metrics. To allow 
comparison across the metrics, we standardise the calculations. 

Users can also produce a summary table of three types of distance metrics, and visualise the 
results. 

The preliminary step is to ensure we have benchmark data. Simply source the previous file as 
below to update it. 

        source("2_Prep_Wtsample_Freq_Table.R") 

Step 1: Read admin data 
        df  <- read_csv("public_release_admin.csv") 

## Rows: 1033664 Columns: 6 
## -- Column specification --------------------------------------------------
------ 
## Delimiter: "," 
## dbl (6): person_id, geog1, sex, agecode1, eth_code5, econg 
##  
## i Use `spec()` to retrieve the full column specification for this data. 
## i Specify the column types or set `show_col_types = FALSE` to quiet this m
essage. 

        tail(df) 

## # A tibble: 6 x 6 
##   person_id geog1   sex agecode1 eth_code5 econg 
##       <dbl>  <dbl> <dbl>    <dbl>     <dbl> <dbl> 
## 1   1033659      1     1        6         1     1 
## 2   1033660      6     1        6         1     1 
## 3   1033661      6     2        5         1     1 
## 4   1033662      5     1       12         1     3 
## 5   1033663      1     2        9         1     1 
## 6   1033664      6     2        9         1     1 

The last six observations of the example admin data are shown above. As the person id goes up 
to 1033664, we can see there are 1033664 observations in admin data. As such, we declare all 
five variables for tabulations. If variables are already defined using var, users can skip this part. 

  var <- c("geog1", "sex", "agecode1", 
            "eth_code5", "econg") 

Step 2: Obtain admin freq tables. 

As mentioned in the previous section, we obtain frequency table of categorical variables (count 
of categories). Users can run the pre-defined function, fn_maxvar5_freq_table() to perform 
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the task. The function6 automatically obtains counts and structure the output in long form, 
organised by each variable, and by its discrete category. 

Once the frequency tables are obtained, we rename the object as Admin_f_table_one. Let’s 
inspect Admin_f_table_one.  

        head(Admin_f_table_one) 

##   seq twdigits admin_n admin_perc oneway v   by1 by2    by3 by4 by5 
## 1   1      101  137993  0.1334989      1 1 geog1  01 oneway   0   0 
## 2   2      102  124051  0.1200110      1 1 geog1  02 oneway   0   0 
## 3   3      103  131176  0.1269039      1 1 geog1  03 oneway   0   0 
## 4   4      104  139867  0.1353119      1 1 geog1  04 oneway   0   0 
## 5   5      105  142304  0.1376695      1 1 geog1  05 oneway   0   0 
## 6   6      106  358273  0.3466049      1 1 geog1  06 oneway   0   0 

       tail(Admin_f_table_one) 

##     seq twdigits admin_n   admin_perc oneway v       by1 by2   by3 by4 by5 
## 340 340   404501    8557 0.0082783187      2 4 eth_code5  04 econg   5  01 
## 341 341   404502     791 0.0007652390      2 4 eth_code5  04 econg   5  02 
## 342 342   404503    5007 0.0048439338      2 4 eth_code5  04 econg   5  03 
## 343 343   405501    3867 0.0037410609      2 4 eth_code5  05 econg   5  01 
## 344 344   405502     255 0.0002466953      2 4 eth_code5  05 econg   5  02 
## 345 345   405503    3420 0.0033086187      2 4 eth_code5  05 econg   5  03 

Step 3: Merge admin + Weighted sample freq tables 
       fn_merge_one_admin_wtsample_f_table_temp() 

The code above merges two data sources. 

Step 4: Create domains of quality indicators 
        fn_create_domain_temp() 

To check the domains, we can use Janitor package’s tabyl function7. The function creates 15 
domains, including five single variables’ domain, and ten bivariate domains. 

        display_domain %>% tabyl(fct_domain) 

##          fct_domain  n     percent 
##               geog1  6 0.017391304 
##                 sex  2 0.005797101 
##            agecode1 14 0.040579710 

 

6 We also provide fn_maxvar4_freq_table() for users who wish to declare four categorical 
variables. 

7 This is essentially almost identical to table(display_domain$fct_domain), but the approach by 
tabyl produces percent by default. 
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##           eth_code5  5 0.014492754 
##               econg  3 0.008695652 
##           geog1:sex 12 0.034782609 
##      geog1:agecode1 84 0.243478261 
##     geog1:eth_code5 30 0.086956522 
##         geog1:econg 18 0.052173913 
##        sex:agecode1 28 0.081159420 
##       sex:eth_code5 10 0.028985507 
##           sex:econg  6 0.017391304 
##  agecode1:eth_code5 70 0.202898551 
##      agecode1:econg 42 0.121739130 
##     eth_code5:econg 15 0.043478261 

Step 5: Compute distance metrics 

Run the functions to compute three types of distance metrics. 

        fn_unstd_distance_metrics_full() 
        fn_unstd_distance_metrics_tidy() 

Step 6: Standardise distance metrics 

Step 7: Reshape, then tidy 

From wide form, the outputs have been reshaped to long form. Then, we keep standardised 
solutions. The results are as follows: 

      df <- distance_metrics_long 
      # std_test(1-Duncan, 1-HD, 1-KL) only 
      df <- df %>% filter(std_test_use == 1) 
 
      df[1:9, c(1:2, 4:5, 9)] 

## # A tibble: 9 x 5 
##   domain_id domain   indicator  index std_test_use 
##       <int> <chr>    <chr>      <dbl>        <dbl> 
## 1         1 geog1    Std_Duncan 0.897            1 
## 2         1 geog1    Std_t_HD   0.911            1 
## 3         1 geog1    Std_t_KL   0.957            1 
## 4         2 sex      Std_Duncan 0.987            1 
## 5         2 sex      Std_t_HD   0.991            1 
## 6         2 sex      Std_t_KL   1.00             1 
## 7         3 agecode1 Std_Duncan 0.946            1 
## 8         3 agecode1 Std_t_HD   0.953            1 
## 9         3 agecode1 Std_t_KL   0.987            1 

Step 8: Visualise the distance metrics 
         plot(p) 
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3.5 RUNNING 3B_R-indicator.R 

The file computes the overall R-indicator. Users can also proceed with computing partial R-
indicators by category level, and variable level. The procedure can be computationally 
extensive. This is noted in the relevant section, so that users can allow some time to execute 
the code. 

On this example, we will prepare the sample and population distributions and calculate an R-
indicator for 5 variables: geog1 (6), sex (2), agecode1 (14) and eth_cod5 (5) and econg (3).  

As part of administrative data preparation, each of the variables should have their categories 
numbered 1,2,3…. We will use these numbers instead of the original names of the categories 
because it will enable us to do loops through the data. This is to facilitate building design matrix 
using dummy variables. 

Along with administrative data, we also need benchmark data from Census. Assuming users 
have no access to Census data, we replace Census with weighted sample counts. The auxiliary 
data file contains these weighted sample counts. 

As such, we will read in both administrative and auxiliary data files separately and compute R-
indicators using matrix syntax in R. Due to the complexity of the procedure, we provide defined 
functions that users can execute with ease in practice. Users can consult 
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Functions/2_Functions_R-indicators.R file for more details on the algorithm and 
operationalisation. 

Step 1: Prepare an Auxiliary data file 

From the frequency table generated by using the weighted sample, we will prepare an auxiliary 
data file to be used for R-indicator computation procedures. This auxiliary file is used as 
benchmark. From the previous steps, we identified the population size of 1,116,350 (popsize = 
1163650) from the weighted sample. 

For R-indicator calculations, we need to compute meanpop by variables which are geography, 
sex, age groups, ethnic groups, and economic activity status. Users can simply run the 
function, fn_meanpop_auxiliary() to achieve this goal.  

  load(file = "Output/04-RData/Weightedsample_freq_table.RData") 
 load(file="Output/04-RData/var.RData") 
 
   fn_meanpop_auxiliary() 

Exerpts of the function is provided below to aid readers’ understanding. 

        # Compute meanpop 
        auxiliary  <- freq_table %>% 
                  filter(oneway == 1) %>% 
                  group_by(by1) %>% 
                  mutate(meanpop = n / popsize) %>% 
                  ungroup()  %>% 
                  dplyr::select(seq, count = n, by1, 
                   v, by2, meanpop, raw_n) 

We first remove two-way and keep the one-way frequency table only. Then, by variable-level 
(indicated by the variable, by1), we compute meanpop. As seen before, the count of each 
category is stored in n. The meanpop is obtained by dividing n by popsize. For example, the 
value of meanpop for first category of geog1 is calculated as 113250/1163650 = 0.0973, and 
the second category of geog1 is 148400/1163650 = 0.1275 and so on. 

Let’s look at the intermediate Auxiliary data. We can see the count of each variable (by1) and 
the sub-category (by2) for five variables. The population size is indicated as 1163560 (shown in 
the first row, under count column).  

        print(auxiliary) 

##    seq   count       by1 v by2     meanpop raw_n     type 
## 1    1 1163650     total 0  00 1.000000000     0 wtsample 
## 2    2  113250     geog1 1  01 0.097323078  2265 wtsample 
## 3    3  148400     geog1 1  02 0.127529756  2968 wtsample 
## 4    4  137450     geog1 1  03 0.118119710  2749 wtsample 
## 5    5  175100     geog1 1  04 0.150474799  3502 wtsample 
## 6    6   92300     geog1 1  05 0.079319383  1846 wtsample 
## 7    7  497150     geog1 1  06 0.427233275  9943 wtsample 
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## 8    8  565350       sex 2  01 0.485841963 11307 wtsample 
## 9    9  598300       sex 2  02 0.514158037 11966 wtsample 
## 10  10   84600  agecode1 3  01 0.072702273  1692 wtsample 
## 11  11   93300  agecode1 3  02 0.080178748  1866 wtsample 
## 12  12  111200  agecode1 3  03 0.095561380  2224 wtsample 
## 13  13  124250  agecode1 3  04 0.106776092  2485 wtsample 
## 14  14  118200  agecode1 3  05 0.101576935  2364 wtsample 
## 15  15   99950  agecode1 3  06 0.085893525  1999 wtsample 
## 16  16   95800  agecode1 3  07 0.082327160  1916 wtsample 
## 17  17   95600  agecode1 3  08 0.082155287  1912 wtsample 
## 18  18   78450  agecode1 3  09 0.067417179  1569 wtsample 
## 19  19   67600  agecode1 3  10 0.058093069  1352 wtsample 
## 20  20   57950  agecode1 3  11 0.049800198  1159 wtsample 
## 21  21   50650  agecode1 3  12 0.043526834  1013 wtsample 
## 22  22   42250  agecode1 3  13 0.036308168   845 wtsample 
## 23  23   43850  agecode1 3  14 0.037683152   877 wtsample 
## 24  24 1083250 eth_code5 4  01 0.930907060 21665 wtsample 
## 25  25   10450 eth_code5 4  02 0.008980364   209 wtsample 
## 26  26   45600 eth_code5 4  03 0.039187041   912 wtsample 
## 27  27   16300 eth_code5 4  04 0.014007648   326 wtsample 
## 28  28    8050 eth_code5 4  05 0.006917888   161 wtsample 
## 29  29  691300     econg 5  01 0.594078976 13826 wtsample 
## 30  30   28250     econg 5  02 0.024277059   565 wtsample 
## 31  31  444100     econg 5  03 0.381643965  8882 wtsample 

Now, we prepare the data to build design matrix using dummy variables. To do so, from the 
total number of categories for each variable, we need to remove the last category of each 
categorical variable (group_by(by1)). The last category is defined by max(by2)and removed 
accordingly. The first row (seq == 1) is not subject to this procedure and kept in the data. As 
shown in the code below, we keep rows if lastcat == 0, while filtering out cases which are 
the last category. We then drop the indicator for the last category (dplyr::select(-
c(lastcat_, lastcat))). Here, we explicitly instruct R to use dplyr package to access 
select function8. 

        col_auxiliary <- auxiliary %>% 
             group_by(by1) %>% 
             mutate( 
              lastcat_ = ifelse(by2 == max(by2), 1, 0), 
              lastcat = ifelse(seq == 1, 0, lastcat_) 
            ) %>% 
             filter(lastcat == 0) %>% 
             dplyr::select(-c(lastcat_, lastcat)) %>% 
             ungroup() 

 

8 This is to avoid warning messages from R when R searches for a particular function from two different 
packages. 
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Notice that from 5 variables, geog1 (6), sex (2), agecode1 (14) and eth_cod5 (5) and econg (3), 
we now have 1+(nvar-1) for each variable so here it is 1+5+1+13+4+3=26 rows. We create a 
macro, numcat to store this information on the total row. 

nrow(col_auxiliary) 

## [1] 26 

numcat <- nrow(col_auxiliary) 
numcat 

## [1] 26 

To inspect the setup on dummy variables (to be created later), let’s produce a cross-tabulation 
by by1 and by2. 

  dummychk <- col_auxiliary 
  dummychk %>% tabyl(by1, by2) 
 

            00 01 02 03 04 05 06 07 08 09 10 11 12 13      

  agecode1   0  1  1  1  1  1  1  1  1  1  1  1  1  1      

  econg      0  1  1  0  0  0  0  0  0  0  0  0  0  0      

  eth_code5  0  1  1  1  1  0  0  0  0  0  0  0  0  0      

  geog1      0  1  1  1  1  1  0  0  0  0  0  0  0  0      

  sex        0  1  0  0  0  0  0  0  0  0  0  0  0  0      

  total      1  0  0  0  0  0  0  0  0  0  0  0  0  0 

All look good. At this stage, we keep meanpop only, dropping other columns, and print meanpop 
in a single column (column vector). This column will be transposed before we save it as row 
vectors. Before reshaping the data, we carefully inspect the values of meanpop. 

        # Print the column vector, meanpop 
        print(col_auxiliary) 

## # A tibble: 26 x 1 
##    meanpop 
##      <dbl> 
##  1 1       
##  2 0.0973  
##  3 0.128   
##  4 0.118   
##  5 0.150   
##  6 0.0793  
##  7 0.486   
##  8 0.0727  
##  9 0.0802  
## 10 0.0956  
## 11 0.107   
## 12 0.102   
## 13 0.0859  
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## 14 0.0823  
## 15 0.0822  
## 16 0.0674  
## 17 0.0581  
## 18 0.0498  
## 19 0.0435  
## 20 0.0363  
## 21 0.931   
## 22 0.00898 
## 23 0.0392  
## 24 0.0140  
## 25 0.594   
## 26 0.0243 

Step 2: Reshape and save benchmark data as row vectors 

We use t(col_auxiliary) to transpose and tidy the reshaped data. We then generate ttt as 
an indicator of benchmark data. We use this indicator for merging with the administrative data 
later. Save the data as popmean_row_vector. 

# Transpose to arrange in row vector format. 
  temp <- t(col_auxiliary) 
  temp <- as.data.frame(temp) 
  row.names(temp) <- 1:nrow(temp) 
 
# generate merge id, ttt. 
  temp$ttt  <- 0 
 
# Rename variables "popmean1- popmean26" 
  names(temp) <- c(paste0("popmean", 1:numcat), "ttt") 
 
# SAVE 
  popmean_row_vector <- temp 

Let’s see the row vector names, “popmean1- popmean26” and ttt. 

    names(popmean_temp) 

##  [1] "popmean1"  "popmean2"  "popmean3"  "popmean4"  "popmean5"  "popmean6
"  
##  [7] "popmean7"  "popmean8"  "popmean9"  "popmean10" "popmean11" "popmean1
2" 
## [13] "popmean13" "popmean14" "popmean15" "popmean16" "popmean17" "popmean1
8" 
## [19] "popmean19" "popmean20" "popmean21" "popmean22" "popmean23" "popmean2
4" 
## [25] "popmean25" "popmean26" "ttt" 

    popmean_temp[, 1:5] 
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##   popmean1   popmean2  popmean3  popmean4  popmean5 
## 1        1 0.09732308 0.1275298 0.1181197 0.1504748 

Now, our benchmark data preparation is completed. 

Step 3: Declare variables in administrative data 

The next step is to declare variables to be used for computing the R-indicator. These variable 
names should be from the administrative data. As mentioned earlier, users may skip this part if 
earlier defined var is unchanged and consistent throughout benchmark data and 
administrative data. In the provided example file, we save var object and load it, rather than 
defining at each stage.  

Follow the instructions if users need to declare here. Users can define their own variables and 
save as a macro, var. For instance, users may use four variables and define as below.  

var <- c(“geog1”, “sex”, “agecode1”, “econg”) 

For demonstration, we use five variables for R-indicator calculations and declared as such.  

# Customise as needed. 
var <- c("geog1", "sex", "agecode1", 
          "eth_code5", "econg") 
var 

## [1] "geog1"    "sex"       "agecode1"  "eth_code5" "econg" 

# End of custom variables.  

This concludes steps 1 through 3. Users can customise some setups up to this point. 

Step 4: Define macro variables 

Along with the defined variables, we need to ensure macro variables are generated correctly. 
These macro variables are not designed to customise and designed to run without altering the 
code. 

var 

variablenum 

maxvar 

popsize 

The total number of variables and the total number of categories of each categorical variables 
will be stored in a macro called variablenum and maxvar. We use var macro, as we defined 
earlier, to derive these two macros. 

variablenum <- length(var)  # No need to customise 
maxvar  <- length(var)    # No need to customise 
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variablenum ; maxvar 

## [1] 5 

## [1] 5 

Earlier, we also generated popsize to feed the information on the (total observation) size of 
the the benchmark data to the programme. The remaining macros, such as respop, piinv and 
rrate, will be automatically generated by the pre-defined functions. 

respop 

piinv 

rrate 

respop is the (sample) size of the administrative data. piinv refers to the inverse pi. rrate is 
computed by resppop/popsize. 

Step 5: Compute R-indicators 

Once steps 1 through 4 are completed, we are set to carry out computing R-indicators. These 
procedures are automated via pre-defined functions using complex matrix and data 
management syntax. Please note that some procedures are computationally intensive. 

We first open the corresponding administrative data, and notice the number of rows is 
1,033,664. 

        aa  <- read_csv("public_release_admin.csv") 

## Rows: 1033664 Columns: 6 
## -- Column specification --------------------------------------------------
------ 
## Delimiter: "," 
## dbl (6): person_id, geog1, sex, agecode1, eth_code5, econg 
##  
## i Use `spec()` to retrieve the full column specification for this data. 
## i Specify the column types or set `show_col_types = FALSE` to quiet this m
essage. 

        nrow(aa) # 1033664 

## [1] 1033664 

We need several empty objects to hold data to get the functions to work as intended. Note that 
we have five functions that permit us to compute overall R-indicators, along with additional 
functions for obtaining partial R-indicators. Each function will generate objects including vvv, 
pop_respmean, des_pop_respmean, gh, and R_indicators as indicated in the function name. 
The partial R-indicators can be found in the data object, partial. 
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        df      <- NULL 
        between <- NULL 
        partial <- NULL 
        partialtemp <-  NULL 
        fn_r_indicator_1_vvv() 
        fn_r_indicator_2_pop_respmean() 
        fn_r_indicator_3_des_pop_respmean() 
        fn_r_indicator_4_gh() 
        fn_R_indicators() 
         
        # Partial R-indicators 
        fn_r_indicator_partialtemp() 
        fn_r_indicator_domain_order_partial() 

Let’s go over one function at a time. 

The utility of fn_overall_r_indicator_1_vvv() is to build design matrix. Starting 
with ensuring that the admin data only contains the declared variables and factorise 
them, the function defines macro variables, resppop and rrate using the data object, 
aa. To prepare for design matrix, the code creates dummy variables, using 
fastDummies R library package. Once all dummy variables generated, we need to 
remove the last category. As such, the function detects the categories of each 
variable and drops the last category. 

Let’s see the vvv object, which contains the design matrix with weights. The weights are 
calculated by the inverse of rrate (finalwgt = 1/rrate). The last five columns are printed 
below. 

   # fn_overall_r_indicator_1_vvv() 
 
      from <- ncol(vvv)-4 
      vvv[1:8, from: ncol(vvv)] 

## # A tibble: 10 x 5 
##    des24 des25 des26 finalwgt piinv 
##    <int> <int> <int>    <dbl> <dbl> 
##  1     0     1     0     1.13     1 
##  2     0     1     0     1.13     1 
##  3     0     1     0     1.13     1 
##  4     0     1     0     1.13     1 
##  5     0     1     0     1.13     1 
##  6     0     0     0     1.13     1 
##  7     0     0     0     1.13     1 
##  8     0     1     0     1.13     1 

The fn_overall_r_indicator_2_pop_respmean() prepares the distributions of the 
administrative data. Using the data object, vvv, we obtain weighted sample counts and 
produces a row vector called respmean_row_vector. Merging the corresponding  
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popmean_row_vector from the benchmark data we prepared at the step 2 earlier, the function 
combines both mean vectors from the two data sources. 

The combined mean vectors are stored at the pop_respmean data object. We will inspect the 
last five columns. 

   # fn_overall_r_indicator_2_pop_respmean() 
 
    from <- ncol(pop_respmean)-4 
    pop_respmean[, from: ncol(pop_respmean)] 

##   respmean25 respmean26 finalwgt piinv ttt 
## 1  0.5896214 0.02252997 1.125753     1   0 

The function, fn_overall_r_indicator_3_des_pop_respmean(), allows us to combine the 
design matrix with the pop_respmean. We store the data at des_pop_respmean. 

   # fn_overall_r_indicator_3_des_pop_respmean() 
 
    names(des_pop_respmean) 

##  [1] "des1"          "des2"          "des3"          "des4"          
##  [5] "des5"          "des6"          "des7"          "des8"          
##  [9] "des9"          "des10"         "des11"         "des12"         
## [13] "des13"         "des14"         "des15"         "des16"         
## [17] "des17"         "des18"         "des19"         "des20"         
## [21] "des21"         "des22"         "des23"         "des24"         
## [25] "des25"         "des26"         "finalwgt"      "piinv"         
## [29] "popmean1"      "popmean2"      "popmean3"      "popmean4"      
## [33] "popmean5"      "popmean6"      "popmean7"      "popmean8"      
## [37] "popmean9"      "popmean10"     "popmean11"     "popmean12"     
## [41] "popmean13"     "popmean14"     "popmean15"     "popmean16"     
## [45] "popmean17"     "popmean18"     "popmean19"     "popmean20"     
## [49] "popmean21"     "popmean22"     "popmean23"     "popmean24"     
## [53] "popmean25"     "popmean26"     "respmean1"     "respmean2"     
## [57] "respmean3"     "respmean4"     "respmean5"     "respmean6"     
## [61] "respmean7"     "respmean8"     "respmean9"     "respmean10"    
## [65] "respmean11"    "respmean12"    "respmean13"    "respmean14"    
## [69] "respmean15"    "respmean16"    "respmean17"    "respmean18"    
## [73] "respmean19"    "respmean20"    "respmean21"    "respmean22"    
## [77] "respmean23"    "respmean24"    "respmean25"    "respmean26"    
## [81] "seq"           "responsesamp1" 

    from <- ncol(des_pop_respmean)-4 
    des_pop_respmean[1:6, from: ncol(des_pop_respmean)] 

## # A tibble: 6 x 5 
##   respmean24 respmean25 respmean26   seq responsesamp1 
##        <dbl>      <dbl>      <dbl> <int>         <dbl> 
## 1     0.0139      0.590     0.0225     1             1 
## 2     0.0139      0.590     0.0225     2             1 
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## 3     0.0139      0.590     0.0225     3             1 
## 4     0.0139      0.590     0.0225     4             1 
## 5     0.0139      0.590     0.0225     5             1 
## 6     0.0139      0.590     0.0225     6             1 

In the fn_overall_r_indicator_4_gh(), we compute the difference from the mean vectors 
and the weight variables. Exerpts of the code from the function below show that the 
differences are stored in rsam and psam. By adding rsam and psam to the intermediate data 
object, des_pop_respmean, we obtain the gh data. This concludes the pre-matrix preparation 
part. 

  # use df for programming. 
  df <<-  data.frame(des_pop_respmean) 
 
  # Prep for loop. 
  des_col      <<-  c(paste0("des"     , 1:numcat)) 
  respmean_col <<-  c(paste0("respmean", 1:numcat)) 
  popmean_col  <<-  c(paste0("popmean" , 1:numcat)) 
 
  des      <<-  df[, des_col] 
  respmean <<-  df[, respmean_col] 
  popmean  <<-  df[, popmean_col] 
 
  rsam <<-  des - respmean 
  psam <<-  des - popmean 
  temp <<-  data.frame(rsam, psam) 
 
  # Rename variables 
  colnames(temp)  <<-  c(paste0("rsam", 1:numcat), 
                       paste0("psam", 1:numcat))  
  # Combine 
  gh <<-  cbind(des_pop_respmean, temp) 

The fn_R_indicators() uses matrix syntax to calculate propensity scores, prior to computing 
R-indicators. We calculate two kinds of propensity scores – one that used only population 
information (roipop, or prop_pop) and the other which used a mixture of the response data 
and the population information (roimix, or prop_mix). 

In terms of partial R-indicators, we demonstrate using prop_mix. Running 
fn_r_indicator_partialtemp() users can yield partial R-indicators at the variable level and 
at the category level. The function, fn_r_indicator_domain_order_partial() helps us to 
organise domains. 

    fn_r_indicator_partialtemp() 
    fn_r_indicator_domain_order_partial() 
    # View(partial) 
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Step 6: Save in Excel and inspect 

At this stage, users can inspect the output accordingly. Let’s have a look. Here, we can see the 
overall R-indicator is estimated as 0.496 based the administrative data (N=1033664). Looking at 
the variable-level R-indicator (see rows 4-8), geog1 was seen to have the greatest R-indicator 
(0.04) compared to econg (0.0002). 

    partial[1:17, c(1:2, 4, 8:10)]  

##    seq    domain        R_indicator  count n_cat domain_n 
## 1    1   Overall       0.4960263148     NA  <NA>       NA 
## 2    2 mrphatall       0.9597768609     NA  <NA>       NA 
## 3    3   resppop 1033664.0000000000     NA  <NA>       NA 
## 4    4    geog1       0.0442418275     NA  <NA>       NA 
## 5    5       sex       0.0004983014     NA  <NA>       NA 
## 6    6  agecode1       0.0152841196     NA  <NA>       NA 
## 7    7 eth_code5       0.0000296805     NA  <NA>       NA 
## 8    8     econg       0.0002117090     NA  <NA>       NA 
## 9    9      des1                 NA      0     1        0 
## 10  10   geog1_1       0.0879501347 137993     1        1 
## 11  11   geog1_2      -0.0192794816 124051     2        1 
## 12  12   geog1_3       0.0219039079 131176     3        1 
## 13  13   geog1_4      -0.0366161292 139867     4        1 
## 14  14   geog1_5       0.1396946734 142304     5        1 
## 15  15   geog1_6      -0.1216543425 358273     6        1 
## 16  16     sex_1      -0.0162005503 489228     1        2 
## 17  17     sex_2       0.0153571986 544436     2        2 
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Step 7: Visualising using scatterplots 

The visualisation of R-indicator by the variable level is shown as an example: 

      plot(p1) 

 

And for R-indicator by the category-level: 

      plot(p2) 
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This concludes the manual. Thank you for taking the time reading the material. Please get in 
touch with any query or errata at fanfurcada@gmail.com. 

If you need technical support, please consult the following Troubleshooting Q & A section. 

4.  Troubleshooting Questions and Answers 

4.1 Questions and Answers 

How do I know where to customise the code to suit my needs? 

Unless indicated as “Customise as needed”, users can run the code as it is. Please consult 
each code file. 

How to use Starting path in multiple machines? 

If users plan to use different machines, simply by changing the “starting path”, users can carry 
out the analysis with minimal disruption. To achieve this, please ensure to use the consistent 
master project folder name. 

What are the commonly used commands? 

Most commonly used commands in the tidyverse package are: 

  arrange : sort variables. 
  bind_rows: append multiple dataframes. 
  mutate  : manipulate variables, and 
            create new variables based on old variables. 
  select  : order, and keep(drop) variables of interest. 
  shell.exec: launch a software and opens the target file (Windows PC only) 

How to free up memory space and speed up RStudio? 

You can remove objects that you no longer need. 

  # To remove objects except for certain objects 
  ls() 
   
  keepobjectslist <- c("a", "b", "c") 
  rm(list = ls()[!ls() %in% keepobjectslist]) 
  ls() 

I get error messages when a pre-defined function is used. 

Users can inspect the codes used in the function, and identify the issues. It is recommended 
NOT edit the function file directly, as the functions are used repeatedly, and the interlinked 
sections may not run as expected. Where preferable, users may copy the codes in the function, 
and use locally with minor tweaks. 

mailto:fanfurcada@gmail.com


32 

 

How do I modify pre-defined functions? 

Users can modify 1_Functions and 2_Functions_R-indicators.R under Functions folder. 

# 1_Functions.R 
fn_output_folder_path <- function() { 
 
  currentdate <<- Sys.Date() 
  txtpath   <<- "Output/01-Txt/" 
  figpath   <<- "Output/02-Figure/" 
  xlsxpath  <<- "./Output/03-ExcelOutput/" 
  Rdatapath <<- "Output/04-RData/" 
} 

We can check how the output folder names are set as path to save the results during the 
analytical process. 

fn_output_folder_path() 

Let’s run the function. We can see that xlsxpath is set as "./Output/03-ExcelOutput/". 

xlsxpath 

## [1] "./Output/03-ExcelOutput/" 

Let’s customise the xlsxpath, by renaming the folder name. If we customise 1_Functions.R 
file, we can edit the information enclosed in the brackets. Notice that we use <<- with 
functions so that the object created by a function will exist in the global R environment. This is 
very important. 

Alternatively, we could ignore the pre-defined function and just write relevant lines of code and 
keep it in the main R script file. For instance, we could put output_folder_path at the top of the 
2_Prep_Wtsample_Freq_Table.R. Here, we edited the xlsxpath. Notice that 
fn_output_folder_path <- function() {  } is removed. 

    xlsxpath_2 <- "./Output/03-Excel/" 
     
    xlsxpath_2 

## [1] "./Output/03-Excel/" 

    #H--------------------------------------- 
    ## > Step 1. Load Census data 
    #H-------------------------------------- 
    # load("pop_u_short_before_sim_5vars.RData") 

Notice that we use <-. Using <<- is not necessary here. Users can remember the usage of <- 
and can modify the functions as appropriate, should the function incur errors. 
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What approaches are taken in programming? 

When loop is used, base R functions were used (table, tapply, etc). For data manipulation, 
tidyverse package was used extensively. This strategy is partly to improve readability of the 
code. 

To enhance users’ workflow, output files are programmed to launch using the pre-defined 
functions. 

Can I ignore Warning messages? 

Some packages alert users with compatibility issues arising from old version. These can be 
ignored. For example, 

  library("fastDummies") 
  Warning message: 
  package 'fastDummies' was built under 
  R version 4.1.2 
 
  library(rlist) 
  Warning message: 
  package 'rlist' was built under R version 4.1.2 

What version of R is used? 

Tested with Windows PC. R version used: 4.1.1 RStudio version: RStudio 2022.12.0 Build 353. 

4.2 Troubleshooting 

Unused argument error 

For example, sim %>% select(geog1) the select command can cause an error: 

Error in select(., geog1) : 
  unused arguments (geog1) 

This maybe due to the conflict in packages. 

The error can be fixed by adding the name of the package used, dplyr, explicitly. sim %>% 
dplyr::select(geog1) 

I get errors when computing… 

Please inspect zero cells, and ensure 0 (numeric value) is entered for n and perc, as well as 
admin_n and admin_perc. Errors may occur with NA coding and data attributes(character, 
factor, numeric). 
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I am experiencing slowness in computation. 

R can be not responsive if memory is full. Please identify bottlenecks and remove them. It 
may be due to certain commands. For example, View(object) command could take a while if 
the object is huge in size. Unless one should inspect the data, suppress the View command to 
expedite the computation where possible. 

It can also be the case that for loop functions can be slow as well. In some instances, removing 
objects may help as this procedure can free up memory space. See above commonly used 
commands for more information. 

Error: cannot allocate vector of size xxxx.x Gb 

If matrix symbols have entered mistakenly, R shows an error message like this. Please double 
check whether there are any mistakes. For instance, one may have typed a*b instead of a%*%b. 
Users can type memory.limit() to check the current memory limit and increase as necessary. 
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