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Abstract

We investigated if we can accurately predict the different types of choices consumers make
given certain food label information. The dataset featured 4620 food choices from 154
participants who chose in each experimental trial the healthiest option out of six options
based on the nutritional information given. Using an auto machine learning software (h2o.ai),
we trained a set of different algorithms to make binary choice predictions for whether
participants would choose a particular type of option in the choice set, for example, if the
least calorific option in the set would be selected. Predictive accuracy was generally >90%
and the type of food and distinctiveness of the choice options contributed most strongly to
predictions. We discuss how combining machine learning predictions with statistical testing

could help us understand food choice decisions within its informational context.



Researchers, public health bodies, companies, and even consumers themselves have
expended much effort to encourage people to make healthier food choices (e.g., (Wartella et
al., 2010b; World Health Organization, 2021). One way that national authorities have tried to
inform consumers about the nutritional value of their choices is by mandating food to carry
labels with nutrition information (Storcksdieck genannt Bonsmann et al., 2010; van den
Wijngaart, 2002). However, measuring the effectiveness of this information is challenging,
partly because determining the healthiest choice is complex and could vary for different
individuals and food types (Food Standards Agency, 2008; Guthrie et al., 2015; Scarborough
et al., 2007). It is thus informative to understand how food labels could inform different types
of choices (e.g., minimising calories vs. minimising fat) and, indeed, what other elements—
be they inherent characteristics or external factors—affect the ability of food labels to guide
participants towards making the healthiest choice out of the many options they may
encounter when buying food.
Modelling food choice and the role of machine learning

Analysing what shapes food choice relies on modelling. One begins with an
intuition—based on from theory or empirical observation—about the factors that generate
differences in what people choose. In a simple model, one might expect that attitudes affect
people's propensity to choose healthier choices; that is, if an individual is more positive about
healthy eating, that individual should be more likely to choose the healthiest option than an
individual who has a less positive attitude. This model can then be tested through the analysis
of real data, typically assessing the variation observed in that data and how it can be
attributed to the model factors. In our example, a researcher might assess the correlation
between attitudes and choice, finding in the data that more positive attitudes are related to
more selections of the healthiest choice. She might then assess whether this relationship is

significant—most commonly operationalised as a less than 5% probability of finding such a



result if a relationship did not exist, or "p <.05". This type of analysis—null hypothesis
significance testing ("NHST")—compares the observed data distribution to a distribution that
assumes the model is non-existent (hence the term "null") and is the most prevalent in
psychology and the behavioural sciences (Bakker & Wicherts, 2011; Hubbard & Ryan, 2000;
Yarkoni & Westfall, 2017).

Increasingly, alternative methods to model behavioural data have been championed.
For example, a Bayesian approach begins by encoding prior assumptions in the model (rather
than the NHST) that is subsequently updated with incoming data to generate a posterior data
distribution (Schonbrodt et al., 2017). Based on this data distribution, one can then quantify
the likelihood of a proposed model (e.g., that attitudes and choice are related) to the
likelihood of the null model. The Bayesian method therefore offers model comparison to
understand which model bests fits—and thus explains—the data. Crucially, like with NHST,
the focus is on explaining the data with the model, so there is a preference for models that
minimise noise in the sample.

In theory, one might expect explainability to be the goal of the investigation, since the
variables that explain people's behaviour should also predict their future behaviour. However,
in practice, the tools in the researcher's toolbox often sacrifice predictability from
explainability because statistical analysis is prone to overfitting a model to the existing data
(Yarkoni & Westfall, 2017). One can easily test any number of models with many variable
combinations on a dataset until one finds the best fit (i.c., the one that reduces noise, or
"error"). However, whether that model will then best explain a new sample is a different
question---and one to which the answer is often "no". Therefore, it is informative to consider
an alternative approach to analysis: examining the predictive ability of the model, that is, that
is, whether the model and its included variables (also known as "features") can accurately

predict future outcomes. It is from this angle that we approach our investigation of healthy



food choice. We look at how accurately (and precisely) we can predict, based on known
information about the individual and the circumstances of their choices, whether a consumer
would make a certain choice.

Prediction is primarily the goal in the field of machine learning. In contrast to the
model-fitting approach (minimising variance), machine learning seeks to prioritises the
model that minimises prediction error. This is typically done by training and testing the
model on different datasets (Yarkoni & Westfall, 2017). This can be done through splitting
the collected data into two samples, where the test (or "hold-out") sample approximates out-
of-sample data. Of course, splitting the data results in fewer observations for training, which
can be problematic without a large dataset. Alternatively, one can "fold" the dataset such that
in one train/test cycle, one fold is the training and the other the test set, with the cycle
repeated for as many folds as one sets (Yarkoni & Westfall, 2017). Leveraging the techniques
and principles of machine learning thus provides a good way to assess whether a model could
_predict _behaviour, rather than just explain it (see (Yarkoni & Westfall, 2017), for a
summary of the core concepts of machine learning and how they can improve traditional
psychological approaches to analysis). Furthermore, while some have argued that this
generates the opposite problem---predictability without explainability (McGovern et al.,
2019) this actually depends on the complexity of the model used. A model with fewer
variables or a straightforward decision-making process is clearer to interpret than one with
many variables and interactions. Moreover, even with complex models, the machine learning
literature suggests ways to quantify the contributions of variables in the models, for example
by comparing the model predictions with the variable to predictions without it (Lundberg &
Lee, 2017; Rodriguez-Pérez & Bajorath, 2020).

Despite the benefits machine learning can offer to psychological research, it is only in

recent years that machine learning has been applied as a novel method of investigation in the



field. Within the area of food-related behaviour, there has been work investigating whether
machines can judge nutrition better than humans (Rokicki et al., 2018), predict preferences
for certain food types (Yu & Fu, 2020), and create healthier recommendations that align with
health outcomes (Elsweiler et al., 2017; G. Mitchell et al., 2021; Panaretos et al., 2018).
Gandhi et al. (in press) applied machine learning methodology to predicting healthiness
judgements of food based on either the foods' nutritional information (e.g., amounts of fat,
sugar, salt etc.), the associations of those food items with commonly used words, or both.
Their models found that healthiness ratings for foods were indeed predictable—with accuracy
rates of up to 91%.

A few studies have also looked at some factors that predict actual food choice. For
example, (Dalenberg et al., 2014) investigated how the emotions evoked by food predicted
food choice, complementing an analysis using mixed-effects models with a "leave-one-out"
cross-validation method that folded the data as many times as the number of observations—
effectively making isolated predictions for each observation (n = 123 in their case). Similarly,
(Verwaeren et al., 2019) followed this approach (combining statistical inference with cross-
validation) to assess predictive accuracy for their models of children's food choice based on
sensory characteristics of the food (from n = 149 children). (Elsweiler et al., 2017) used a
machine learning approach to predict whether participants would select one recipe over a
similar one (in a pair) based on characteristics of the recipe's title, images, ingredients, ratings
from other users, and nutritional content. Their modelling included both cross-validation and
out of sample testing, and reported 64-66% accuracy in predicting which recipe would be
selected among just over 1,100 observations from around 100 participants. So far, this
growing literature indicates that machine learning can be a promising tool to investigate food

choice behaviours.



Despite these promising indications, research in this area is still limited, especially
compared to the wealth of studies in the wider food choice literature. An area within this
literature that has received much attention is the use of nutrition labels, where investigations
have spanned decades, including many systematic reviews about whether nutrition labels
facilitate food choice (e.g., (Campos et al., 2011; Cowburn & Stockley, 2005; Grunert &
Wills, 2007; Hersey et al., 2013; Hieke & Taylor, 2012; Soederberg Miller & Cassady,
2015)However, to our knowledge, machine learning has yet to be employed in these
investigations. We therefore add to this body of work by leveraging machine learning as a
tool to understand how people determine the healthiest food item in a choice set from their
nutrition labels.

Nutrition labels and food choice

Nutrition labels have been widely endorsed as a tool to improve the healthiness of
consumer diets (OECD & Publishing, 2008), with the majority of Western nations mandating
some form of nutrition labels (Storcksdieck genannt Bonsmann et al., 2010). An estimated
80% of food products in Europe and the UK additionally adopt front-of-package (FOP)
labels, which are posited to facilitate consumers' visual access to comprehensiveness
information about key nutritional qualities of a food (Storcksdieck genannt Bonsmann et al.,
2010) and increase the chances of this information being used to judge food healthiness
(Wartella et al., 2010a). There is, however, scant evidence that these labels have brought
down obesity rates as they were intended to (Storcksdieck genannt Bonsmann & Wills,
2012). One issue is of course whether people use labels; in general, people purport to use
labels and find them more useful (Campos et al., 2011; Cowburn & Stockley, 2005) but
actual usage is substantially less (Cowburn & Stockley, 2005; Higginson et al., 2002). The
other questions is whether people use the labels effectively; here, empirical evidence is also

conflicting. A number of studies reported that participants misunderstood labels (Graham &



Mohr, 2014; Liu et al., 2019; Mackey & Metz, 2009) or misjudged food nutrition based on
the information (Levy et al., 2000). Some studies reported that participants could not reliably
select the healthiest option in a set given nutrition labels (Gorton et al., 2008). Yet others
reported that most of their participants successfully used nutrition labels to pick the healthiest
option (Barreiro-Hurle et al., 2010; Grunert et al., 2010). This may of course be a case of
what type of label was tested, since some reviews have found that FOP labels with colour-
coding and text (compared to those without) facilitate selection of healthier choices
(Cowburn & Stockley, 2005; Hersey et al., 2013).

A different problem may be that in practice, it is not that simple to judge which option
is the healthiest. In certain cases, if one option stochastically dominates all others (e.g., if the
option is lower in fat, sugar and salt than all the others), it is clear this is the best. However,
one will more commonly encounter situations where options perform best on one attribute
but worst on another (e.g., lowest in fat, highest in sugar). One way to select may be to
identify the option that is best on average across the attributes. Alternatively, one might also
consider one attribute to be superior to the others (e.g., lowest in sugar). Such a strategy,
known as "take the best", is a shortcut "heuristic" that people often employ (Scheibehenne et
al., 2007). It may well be a rational and appropriate criterion due to an individual's personal
circumstance (e.g., specific medical conditions). It is also worth bearing in mind that even
experts do not necessarily agree on what is the healthiest option. In a study where dieticians
and nutritionists in the UK were asked to select the healthier of two real food options (with
nutrition labels), the experts only reached >80% agreement for the healthier product in 60%
of the pairs (Food Standards Agency, 2008). (Scarborough et al., 2007) also found that
nutrition professionals varied highly in their categorisation of the healthiness of some foods.
Therefore, it is perhaps advisable to consider when consumers would make the best choice as

determined by several different criteria rather than one single measure.



One barrier to systematically assessing choices against each criteria is the danger of
inflated p-values inherent in testing data multiple times. Using the traditional analytical
approach of NHST, if one tests five different criteria for healthiness on the same choices,
there is at least a 23% chance! of finding a significant result. One could of course collect five
different new datasets systematically to avoid this, however this requires additional time and
resources. We propose that the advantages offered by machine learning, described above,
present an opportunity to exploratorily analyse food choice data from different angles without
"the tyranny of p-values" (Stang et al., 2010).

Present research

The rest of this paper is structured as follows. We first describe the food choice
dataset, how it was obtained, and how choices were scored. Then, we then describe the
models (including their predictor variables) and how they were trained and tested. We then
present the modelling results: (i) the performance of the models when assessing choices for
different healthiness criteria and (i) the contribution strength of each predictor variable
included in the models. Here, we include as well a test of the data using typical Null
Hypothesis Significance Testing in a general linear model (GLM). The GLM was also
assessed for fit and predictive accuracy and precision. This allowed as to compare the use of
tree-based machine learning methods against the more commonly used GLM. Finally, we
discuss the results in terms of relative model performance and the overall findings of our
analyses.

Model data

About the dataset

! The familywise error rate, based on the typical /alpha/ = .05 significance level for just five

comparisons = 1-(1-0.05)"5.



The dataset consists of 4620 choices made by 154 participants (30 per participant).
For each choice, participants chose the healthiest option out of a set of 6 randomised choice
options, each depicted by a food label.

In each trial, these 6 options depicted varieties of a type of food (taken from the
dataset of real foods that was used in the expert study described above; FSA, 2008). The
different categories were: ready meals, yoghurts, sandwiches, crisps, soups, and breakfast
cereals.

Each label showed energy, fat, sugar, and salt content for the food, with traffic light
bands applied to fat, sugar, and salt (green, amber, red). %RI values were also provided as
numerical figures, rounded to the nearest whole number.

Choice predictions

For each choice trial, participants' choices could be classified according to whether

the chosen option aligned with the option in the given choice set that?:

(1) Minimised the equally weighted average of %RI provided by each of the nutrients

(i1) Minimised the equally weighted average across traffic light band categories for each of
the nutrients (i.e., whether the option is likely to fall under red, amber, and green on average)
(iii) For each of the following: Fat, Sugar, Salt, Energy?;

(iv) Minimised the %RI for that nutrient

(v) Minimised the traffic banding for that nutrient

For each of these, we ran the models to ascertain what predicted choices that
corresponded to that classification.

Models

2 Note that in each choice set, one option might correspond to more than one of the classifications above (e.g., a
choice that minimised salt might also minimise sugar).

3 As traffic light banding was not available for energy, we only included energy under the minimising %RI
classification.



Scripts and datasets to run the models are available at the following link:

https://github.com/dlholf/foodml

Data splits
As our dataset contained sufficient observations (n = 4620), we elected to use a hold-out
sample (our test set), with cross-validation of the initial models run on the training set using
five validation folds. We split the data 80/20 into a training and test set*. For the cross-
validation folds, we used balanced resampling in the training set when there were imbalances
of > 80/20 ratio in occurrences of the target. For example, 91% (4204) of choices
corresponded with the option that minimised the average traffic light band on the label vs. 9%
(416) did not. In contrast, 57% (2643) of choices corresponded with the option that
minimised the average %RI of the nutrients vs. 43% (1977) did not.
Model algorithms
Using h20.ai°, we trained a set of 20 base models (each tuned within the h20.automl()
function) to predict each choice alignment. Each model used 5 cross-validation folds within
the training set, and was subsequently tested on a hold-out test sample.
Each model used the following predictors:
e Type of food (breakfast cereal, soup, ready meal, yoghurt, crisps, or sandwiches, each
dummy coded)
e Time taken to make choice
e Demographics and individual characteristics:
e Attitudes to healthy eating

e Frequency of nutrition label use

* One exception was for choices that minimised sugar TFL bands, because of a massive class imbalance, which
meant an 80/20 training/test split would have left <5 items for test prediction. A 60/40 split was used in this
case.

® https://docs.h20.ai/h20/latest-stable/h20-docs/automl.html



e Factor considered important in determining food healthiness (reducing calories, fat,
sugar, salt, or all, each dummy coded)

o Age

e Gender

e Number of other criteria the choice also aligned with (e.g., that option might be the
best for minimising energy and fat)

e Distance (in original units) between the best and second best option in the choice set

Model selection (out of 20 automl base models)

For each choice alignment variable (the DV), we selected the best performing model
from the 20 automl base models. Model selection was determined by inspection of the
confusion matrix of predictions in the test sets, seeking to minimise classification error rates
across both types of correct classification (true positives and true negatives), but also
prioritise minimising false positives over false negatives. For each DV, the results reported
are based on the final selected model.

Analysing model features

We analysed the contributions of individual predictors to the models using:

1. A trained surrogate model. This extracted the predictions made for the dataset (train and
test sets) by each model and trained a single decision tree on the predictions. We then plotted
the trees and their nodes, which are split based on relevant predictors. This gave a picture of
the predictive variable (and its critical value) that led to resultant classification probabilities.
2. Shapley's (SHAP) values of each predictor, which assigns each predictor an importance
value for a particular prediction (Lundberg & Lee, 2017). The SHAP values compare what a
model predicts with and without a predictor to determine that predictor's contribution (Paris,
2020). These help us to identify whether predictors are making strong positive (i.e., 'yes') or

negative (i.e., 'no') contributions in the model (Rodriguez-Pérez & Bajorath, 2020).



The SHAP values can be visualised in two ways:
(1) Plotting the SHAP values for each predictor shows the change in log odds for each
individual data point in the sample (with its unique predictor value).
(i1) Partial dependency plots (PDP) for individual predictors show a finer-grained evaluation
of the change in SHAP values (i.e., the predictive contributions) across different predictor
values.

Results
Model fit and performance

Statistics for each of the classification models are presented in Table 1. We report the
type of model used (in general, these were Gradient Boosted Machines, which are decision
tree models), the AUC, log loss, mean per class error, mean square error, and three harmonic
means (f) of precision and recall (Brownlee, 2020), along with the rate of false positives and
false negatives and the total error rate observed when applying the model to the test set.

The mean f1 is the ratio of precision (percentage of correct predictions—minimising
false positives) to recall (percentage of correct predictions for the positive class—minimising
false negatives). The mean f0.5 calculates the ratio with more weight on precision and less on
recall (i.e., more importance on minimising false positives), while the mean f2 calculates the
ratio with less weight on precision and more on recall (i.e., more importance on minimising
false negatives).

Model features and explainability

We assessed the sign and magnitude of how the SHAP values were correlated with
the actual values observed for each predictor variable in the data. Tables 2 and 3 report for
each model the sign of the predictor and the relative magnitude of the correlation (as a

ranking against other predictors in the model, where 1 reflects the most correlated predictor).



Table 1.

Statistics for the best classification model for each DV

DV Model type AUC Logloess Mean per MSE Meanfl Mean Mean False False Total error

class error 2 0.5 positive rate  negative rate  rate

%RI classification models

Minimise sugar %RI Gradient Boosted 1.00  0.08 1.75% 0.02  0.71 073  0.73 7.01% 9.89% 7.90%
Machine

Minimise fat %RI Gradient Boosted 099  0.16 6.18% 0.04  0.72 076 072  5.76% 9.79% 7.03%
Machine

Minimise energy %RI  Extreme Gradient 0.99  0.14 4.53% 0.04 0.73 0.75 073 5.29% 14.5% 8.56%
Boosted Machine

Minimise salt %RI Gradient Boosted 096  0.28 12.1% 0.09  0.62 0.66  0.63 14.4% 18.1% 15.6%
Machine

Minimise average %RI  Gradient Boosted 1.00  0.10 2.25% 0.02  0.80 0.78 084  751% 3.16% 4.94%
Machine

TFL band classification models

Minimise sugar traffic =~ Gradient Boosted 1.00 1.22 0% 042  0.67 0.63  0.75 40% 0.05% 0.16%

light band Machine

Minimise fat traffic Extreme Gradient 1.00  0.02 6.48% 0.01 0.77 072 086 0% 0.68% 0.66%

light band Boosted Machine

Minimise salt traffic Gradient Boosted 099 036 2.93% 0.13  0.84 0.80 0.89  6.25% 4.05% 4.28%

light band Machine

Minimise average TFL ~ Gradient Boosted 1.00  0.24 0.04% 0.07  0.84 0.79 090 0% 0.36% 0.33%

band Machine




Table 2.

Rank and sign of predictor variables in the %RI prediction models

Predictor %RI Sugar %RI Fat %RI Energy %RI Salt Average %RI Mean
Sign Rank Sign Rank Sign Rank Sign Rank Sign Rank rank
Food type: ready meal - 1 + 13 - 1 + 4 + 2 4.2
Food type: yoghurt + 2 - 17 - 5 + 2 - 6 6.4
Food type: cereal + 3 - 2 + 14 - 1 + 1 4.2
Food type: crisps + 5 + 1 + 10 - 13 - 7 7.2
Food type: soup + 6 + 4 - 13 + 18 - 5 9.2
Food type: sandwich - 7 - 3 + 3 - 3 + 3 3.8
Health concern: reduce sugar + 9 - 6 - 12 + 8 + 12 9.4
Health concern: reduce fat + 14 + 10 + 7 - 9 + 14 10.8
Health concern: reduce calories - 4 + 8 + 4 - 11 - 8 7
Health concern: reduce salt + 15 - 5 - 2 + 7 + 16 9
Health concern: reduce all - 17 + 7 + 6 - 14 + 18 12.4
Age + 11 + 9 - 18 - 10 - 13 12.2
Gender - 12 - 15 - 9 5 - 15 11.2
Response time + 8 - 16 - 17 17 + 10 13.6
Attitude to healthy eating - 16 + 14 + 15 - 16 - 17 15.6
Nutrition label use - 18 - 18 - 11 - 15 + 11 14.6
Number of other classifications + 13 + 11 + 8 19 + 4 11
Distance from second-best option + 10 + 12 + 16 6 + 9 10.6
Number of other options that were NA NA NA NA NA NA - 12 NA NA NA

equally the best




Plotting the SHAP values against the actual values of each predictor, as shown in the
example for minimising %RI of sugar in Figure 1, illustrate the relative contributions of the

predictors to the models.

Figure 1. SHAP values and partial dependence plots for predictors of whether the option

with the lowest %RI of sugar would be selected.

Plot of SHAP values for individual trials in test set (left) and partial dependence plots for five most highly correlated predictors and health concern about sugar for the selection
of options with the lowest %Rl of sugar
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Plotting a surrogate tree for each model allowed us to corroborate how the predictors
were used in classification by a single decision tree. For example, as shown in Figure 2, the
surrogate tree for minimising %RI of sugar shows the importance of yoghurts, cereals, soups,
and how distinct the lowest-sugar option was from the other options in making predictions.

Health concerns—i.e., whether the participant viewed reducing sugar, fat, calories,
salt, or all of them as the most important in determining food healthiness—also did not

consistently contribute to predicting selections in the same direction. For example, concern



about reducing fat tended to predict the selection of lowest sugar, fat, energy, and overall
%RI options, however it tended to predict non-selection of lowest fat %RI options.

Other individual characteristics such as age, gender, attitudes, frequency of nutrition
label use, and the speed of responses, were generally ranked lower in terms of how well they
correlated with SHAP values, indicating a less linear relationship with selection. Again, none
of these variables had a consistent sign of correlation with SHAP values across all the
models, with each predicting selection for some products and non-selection for others.

This tells us that there is clearly a trade-off to be made between the various products;
and the same variables that help one to select the best option by one criteria may not be
helpful with a different criteria.

Overall, food type tended to consistently contribute to predictions, showing clear
correlations between the predictor values and SHAP values. The sign of this correlation was
never consistent across all models, however—for example, sandwiches, which most
consistently contributed to predictions, predicted the selection of lowest energy and overal
%RI options. However, they predicted non-selection of the other lowest options (sugar, fat,

and salt).



Figure 2. Surrogate decision tree for the prediction of selecting an option that is the lowest in

%RI of sugar in the set.
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Table 3

Rank and sign of predictor variables in the TFL prediction models

Predictor TFL Sugar TFL Fat TFL Salt Average TFL Mean
rank

Sign  Rank Sign Rank Sign Rank Sign Rank Sign

Food type: ready - 4 - 6 - 5 - 12 6.75

meal

Food type: yoghurt - 5 NA NA + 2 + 3 333

Food type: cereal + 3 NA NA + 6 + 2 3.67

Food type: crisps - 7 NA NA + 3 + 4 4.67

Food type: soup - 10 NA NA + 4 + 5 6.33

Food type: sandwich + 1 - 8 - 11 - 7 6.75

Health concern: + 12 - 3 - 19 - 8 9

reduce sugar

Health concern: - 8 + 1 - 12 + 14 8.75

reduce fat

Health concern: + 9 - 2 + 9 + 9 7.25

reduce calories

Health concern: - 14 - 4 + 10 + 11 9.75

reduce salt

Health concern: + 19 + 7 + 15 + 13 13.5

reduce all

Age + 18 - 13 - 13 - 17 15.25

Gender - 11 + 14 + 14 - 15 13.5

Response time + 17 - 9 + 16 + 19 15.25

Attitude to heatlhy + 15 - 12 - 17 + 18 15.5

eating

Nutrition label use - 13 + 10 - 18 - 16 14.25

Number of other + 6 + 11 + 8 + 10 8.75

classifications

Distance from - 2 NA NA - 1 - 1 1.33

second-best option

Number of other + 16 + 5 + 7 + 6 9.25

options that were

equally the best




Contrast with GLM

As part of the h2o0.automl() process, we were also able to identify models that used
basic GLM (a typical statistical model that identifies the best parameters, or coefficients, that
fits an equation that includes the predictors to the data). For each of the models, we compared
predictions under the GLM vs. best machine learning model and examined which predictors
offered better explanations of the data.

Overall, the GLMs performed worse. For example, the GLM for reducing %RI sugar
had a 23% error rate in predictions (vs. 8% for the GBM model) and harmonic mean of
precision/recall of 0.52 vs. 0.71 (meaning a lower false positive and false negative rate in the
GBM model). The only instance in which a GLM outperformed the tree-based model in
predictive ability was in reducing false positives for the model minimising sugar traffic light
banding (20% false positives vs. 40%)—this was a case where the class imbalance was so

high (>99%) that we should in any case be wary of overfitting.



Table 4.

Statistics for the GLM classification models

DV AUC Log loss Mean per MSE Mean fl Mean 2 Mean f0.5  False positive  False negative ~ Total error

class error rate rate rate

%RI classification models

Minimise sugar %RI 0.82 0.47 23.2% 0.15 0.52 0.58 0.50 22.5% 24.7% 23.2%
Minimise fat %RI 0.83 0.47 20.8% 0.15 0.53 0.59 0.52 23.5% 19.6% 22.3%
Minimise energy %Rl 0.88 0.40 21.1% 0.13 0.60 0.63 0.62 33.3% 13.5% 26.2 %
Minimise salt %RI 0.80 0.50 26.6% 0.17 0.52 0.58 0.50 29.4% 26.3% 28.4%
Minimise average %RI  0.92 0.36 12.6% 0.11 0.75 0.75 0.79 11.0% 10.4% 10.6%

TFL band classification models

Minimise sugar traffic ~ 1.00 0.003 21.4% <.001 091 0.87 0.96 20% 0.05% 0.11%
light band
Minimise fat traffic 1.00 0.03 5.33% 0.01 0.86 0.81 0.93 28% 0.34% 1.10%
light band
Minimise salt traffic 0.98 0.11 19.1% 0.04 0.88 0.85 0.93 12.5% 3.19% 4.17%

light band




Explainability via NHST

We complemented our machine learning models with null hypothesis significance
testing using mixed-effects models using the Ime4 package in R. These models included
random intercepts for participants in order to account for repeated trials in the data. For
multicategorical variables (food type and health concerns), we used as the reference class the
category that least contributed to predictions.

While automl was able to run GLM-based classification models, the imbalances of
certain categorical variables posed a problem for the model specifications for a mixed-effect
GLM resulting in models that failed to converge for models with selections that minimised
TFL values. We therefore confined our mixed-effects analyses to models with selections
minimising %RI.

Table 5 shows the odds ratios (and their respective p-values) obtained for each
variable in the mixed-effects GLMs for the five %RI-minimising models. As found with the
machine learning models, the variables did not have the same sign across all models, further
supporting that different variables will be of predictive importance depending on which
nutrient one wishes to minimise in one's diet—and the necessary trade-off in decision-making
needed.

Another similarity with the machine learning models was that regardless of which
criteria was used to score the healthiest option, food type tended to have consistently large
odds ratios in predicting whether the best option was selected—in some cases, even greater
than the distinctiveness of that option and whether it was the best by more criteria (both of
which one would sensibly expect to be consistent predictors of best-option selection). This
underscores the importance of considering how different food types might affect how people

use food labels to judge their healthiness.



The contribution of what people were most concerned about in determining
healthiness was comparably small, with each concern about 1.5 times on average more likely
than the least concern to predict best-option selection (vs. not).

Finally, demographic variables and individual differences in attitudes and nutrition
label use had virtually no role in predicting whether participants would select the best option
for most of the criteria. (The exception was gender, where females were 1.6 times more likely
than males to pick the option with lowest %RI of salt as the healthiest.)

Overall, these patterns align well on the whole with what we observed with the

machine learning insights.



Table 5.

Odds ratios and significance of predictor variables in the %RI GLMs

Predictor %RI Sugar %RI Fat %RI Energy %RI Salt Average %RI Mean
OR p OR D OR p OR p OR P absolute OR
Food type: ready meal 0.29 <.001 1.40 .090 0.05 <.001 0.02 .001 14.74 <.001 17.91
Food type: yoghurt 7.37 <.001 NA NA 0.20 <.001 27.59  <.001 0.12 <.001 12.07
Food type: cereal 7.24 <.001 1.82 001 NA NA 0.66 460 3.45 <.001 3.51
Food type: crisps 0.30 <.001 4.22 <.001 1.13 464 4.60 002 NA NA 3.32
Food type: soup 1.15 317 2.21 <.001 0.63 <.001 NA NA 0.80 221 1.55
Food type: sandwich NA NA 0.20 <.001 9.26 <.001 0.14 <.001 6.40 <.001 6.95
Health concern: reduce sugar 1.64 016 0.53 010 NA NA 1.24 274 0.96 .827 1.45
Health concern: reduce fat 1.24 398 NA NA 1.43 122 0.73 202 1.22 326 1.31
Health concern: reduce calories 0.57 .060 1.04 .188 2.89 <.001 0.70 204 0.85 457 1.66
Health concern: reduce salt 1.32 285 0.36 001 0.86 531 1.44 .091 0.86 460 1.57
Health concern: reduce all NA NA 0.73 .188 1.50 030 NA NA NA NA 1.43
Age 1.16 204 1.00 971 0.86 165 1.05 .679 1.13 191 1.04
Gender 1.01 .944 0.74 113 0.75 .108 1.62 .010 0.85 290 1.30
Response time 1.06 193 0.98 .667 0.96 432 0.97 434 1.06 271 1.04
Attitude to healthy eating 1.02 .869 1.02 .819 1.03 .686 0.98 787 0.97 .640 1.02
Nutrition label use 0.99 .892 1.00 .999 0.95 .570 1.04 713 1.08 326 1.04
Number of other classifications 1.28 <.001 3.06 <.001 6.35 <.001 1.10 .093 27.61 <.001 7.88
Distance from second-best option 1.27 .028 2.86 <.001 1.18 197 11.64 <.001 1.99 <.001 3.79
Number of other options that NA NA NA NA NA NA 1.44 343 NA NA NA

were equally the best

Note: Odds ratio (OR) < 1 indicate that the variable is _less predictive of selecting the option for the relevant column. Mean OR is calculated as

the mean magnitude (i.e., using the positive odds, i.e., the inverse of ORs < 1).



Discussion

Using an automated machine learning software (h20.ai), we trained a set of 20 tree-
based model algorithms to predict in a dataset of 4,620 choice observations whether an
individual picked the healthiest option (out of 6). We operationalised the healthiest option in
different ways, running a separate set of models to predict whether a participant's chosen
healthiest option was one that minimised:

(1) the equally weighted average of %RI provided by each of the nutrients
(i1) the level of %RI contributions each for fat, sugar, salt, or energy

(ii1) the equally weighted average across traffic light band categories

(iv) the traffic light band category each for fat, sugar, or salt

Overall, the models were able to predict whether participants picked the healthiest
choice in >90% of instances (except for %RI of salt, where the total error rate was
approximately 16%). For the majority of models, the false positive rate (i.e., predicting a
healthiest choice when it was not the case) remained low (<10%), with acceptable false
negative rates as well (i.e., failing to predict when someone picked the healthiest choice). The
models were tested using cross-validation folds within the training sample (80% of the data)
and again on a 20% holdout sample. Therefore, the error rates reported, which are from the
holdout sample, reflect an ability to predict in a completely unseen dataset which healthy
choices would be made.

These results are comparable to those obtained in a few previous studies where
machine learning techniques were able to predict participants' choice of food based on food-
evoked emotions (50-80% accuracy; (Dalenberg et al., 2014), sensory food characteristics
(69% accuracy; (Verwaeren et al., 2019), and recipe characteristics (64-66% accuracy;

(Elsweiler et al., 2017). We therefore add to the growing base of evidence about the strong



potential for machine learning to predict—and subsequently understand—food choice
behaviours.

However, performance did vary across the different healthiness criteria we tested for
in our modelling. Within the same food label, there were many different ways one could
determine the food's healthiness: based on the numerical %RI value that indicates the
contribution of 4 possible nutrients (sugar, fat, energy, salt), or the traffic light band colour
given to 3 of the nutrients (sugar, fat, salt). For the %RI values, which are more precise,
options could be differentiated on the basis of smaller differences, and a single option was
most likely to be identified as the best for each nutrient (and more so for their average %RI).
These %RI-based differences between options can often be small, to the point that one may
wonder if they make any real difference to consumers. Past work has suggested that small
differences in nutritional content still matter and can drive selection of one product over
another (Miller et al., 2015). In our data, the model based on %RI differences had prediction
rates of 84% (for selecting options with lowest salt %RI) to 95% (for selecting options with
the lowest average %RI). This suggests that there are indeed variables in the the food
information environment that can help us understand when consumers identify these finely-
differentiated options as being healthiest.

In contrast to %RI information, for the traffic light bands, which capture a broader
range of values within them, there was often more than a single option within the choice set
that would be the best for a particular nutrient. The data prior to modelling suggested that the
traffic light bands were to some extent effective: large proportions of participants selected the
best choice under each of the traffic light band criteria (in the most extreme case, by 997:1 for
sugar). Unfortunately, this resulted in sample imbalances that made it harder to predict when
participants might fail to identify this best choice. In such cases, the model may learn to

predict this is the default choice. For instance, predicting the healthiness of choices based on



sugar traffic light banding (i.e., whether the "green" sugar option was selected) had an
extremely high false positive rate (40%). Interestingly, despite also suffering similar
imbalances in the sample, predictive accuracy for the other traffic light band criteria (fat, salt,
average band rating) suffered much less from false positives. As such, there appear to be
predictive variables that highlight when people select foods with labels that are "green" on
average, or for fat or salt, but not sugar.

What explains choices?

One critique of machine learning models has been that there is low explainability, i.e.,
it is difficult to identify why the model predicted people would choose that option. However,
it is possible to place a value on how much each predictor variable in the model contributes to
a prediction (i.e., the SHAP value: a smaller SHAP indicates the variable is less important to
the prediction, whereas a larger positive SHAP indicates the variable is more important for
predicting a choice will be selected, and a larger negative SHAP indicates the variable is
more important for predicting that the choice will not be selected). We correlated the SHAP
values with the predictor values to determine the directional association between predictor
and predicted choice. We were also able to assess the probability of a certain prediction based
on different predictor values (i.e., through a surrogate model). We also ran a robustness check
using GLM regression models to check the effects of the same predictors, which broadly
corroborated with our machine learning analysis. Altogether, these methods allowed us to
identify the features of the food information environment that might explain predictions.

A key finding from this analysis was that people likely use different healthiness
criteria depending on the type of food they purchase and, to a lesser extent, what nutrients
they perceived as detrimental to health. Type of food was constantly an important contributor
to predictions, but how it aided predictions varied across the healthiness criteria. For

example, yoghurts and cereals were positively associated to predicting lowest-sugar choices,



but these tended to predict higher fat choices. In contrast, lowest-fat choices were better
predicted for crisps and soups, but these same foods tended to predict choices that were
higher in average nutrient contribution. This suggests that low sugar may be a consumer
criteria for picking the healthiest yoghurt and cereal, whereas low fat has more importance in
selecting the healthiest crisps. Crucially, the fact that the direction of prediction varies for
different foods reflects a trade-off people are required to make, where picking the lowest
sugar product often means forgoing the lowest fat one. Indeed, this trade-off was visible from
how participants' concerns about which nutrient should determine healthiness. As would be
expected, these concerns positively predicted the respective healthiest choices—i.e., one's
belief that reducing sugar is most important to determining health increases the prediction
that one would select the lowest sugar option as the healthiest choice. However, believing
that reducing sugar was most important also contributed to a /ess likely selection of the
lowest %RI fat option; similarly for other nutrient reduction priorities. There was no one
criteria (even best average reduction of all nutrients) that was also positively associated with
lowering all of the possible %RIs, highlighting the complexity of making a food healthiness
decision within a given food information environment.

The variation in predictive explainability among foods—even for selecting the lowest
average %RI option—also suggests that how one judges healthiness is likely not a simple
matter of prioritising one nutrient in the decision. Indeed, concerns about individual nutrients
were generally less strongly correlated with predictive contributions. Only salt and
energy/calorie concerns were among the top five strongest contributors to any model's
predictions—and in fact, concern about reducing salt was ranked higher in predicting higher
energy and fat choices than in predicting lowest salt choices. This could mean that
participants' beliefs about the healthfulness of nutrients did not strongly guide their choices—

or more likely, the beliefs were more complex than stated, and varied depending on the foods.



Our findings here align with other recent work that people's existing knowledge about
different food items is better able to predict how healthy they judge those foods to be, over
and above the nutritional content of the food (although nutritional information can be helpful
on top of that existing knowledge). For example, Gandhi et al. (in press) found that a model
trying to predict food healthiness judgements by using linguistic representations of people's
knowledge about the food items fared better (by about 12% greater predictive accuracy) than
a model that simply used nutritional information to predict judgements—although combining
both types of information in the modelling improved predictive accuracy.

Contrary to what one might expect, other individual characteristics of participants
such as demographics (age, gender), attitudes to healthy eating, and nutrition label use
frequency had less importance in the models' predictions. Gender was important to the choice
of lowest-salt products by %RI, where female participants were predicted to select these more
than male ones, but this was the only instance in which demographic differences ranked
among the top 5 predictors used by the models. Altogether this suggests a complex
relationship between individual difference variables and the propensity to choose certain food
options. However, the range of individual difference variables in our sample was fairly
limited, since there would only have been 154 unique individuals in the dataset. With a larger
and more diverse sample, it is still possible that these characteristics might take on more
importance for predictions. However, we did already see that the direction of the predictive
contributions from each variable varied depending on which criterion was modelled, and we
would expect this to still be the case in a more diverse dataset. In other words, we might
predict older participants to select lowest sugar and lowest fat options more, but lowest

calorie options less.



Limitations

While our work offers greater insight on how machine learning methods could be
leveraged to better understand the complexities involved in deciding whether something is
healthy, it does have some limitations. First, although our sample sizes were comparable to
other initial studies in machine learning and food choice (e.g., repeated observations from
100-200 participants; (Dalenberg et al., 2014; Elsweiler et al., 2017; Verwaeren et al., 2019);
Gandhi et al., in press), these are still small datasets (totaling observations in the thousands)
compared to many datasets in the wider machine learning field (millions of observations,
(Galeano & Pena, 2019; Gudivada et al., 2015); potentially billions, (Sh. Hajirahimova & S.
Aliyeva, 2017)) and even some areas of psychology (Yarkoni & Westfall, 2017). Larger
datasets are naturally beneficial in avoiding model overfitting to a specific dataset, since it
becomes less likely for the model to learn patterns unique to the training data (Yarkoni &
Westfall, 2017). While the crossfold validation and out-of-sample testing procedures we used
for model predictions provide some measure of protection against overfitting, larger samples
remain a better way to improve model generalisation and balance issues with under or over-
fitting.

Second, our participants were drawn from a predominantly "WEIRD" (Henrich et al.,
2010) undergraduate student population, which may not be fully representative of the wider
population. Our work presents more evidence for how machine learning methods could be
applied to understanding food choice, but much more analysis of data from a wider
population is needed to verify the insights we obtained from our limited data. This limitation
cannot be understated: the danger of encoding biases from the training dataset into algorithms
has been exemplified by high-profile cases where biased algorithms result in biased real-
world decisions, often to great detriment to already-disadvantaged minorities (Cathy O’Neil,

2016; Eubanks, 2018).



Conclusion

As the application of machine learning methods to behavioural questions is still in its
infancy, we believe our findings on a small scale are of value to shaping future research
questions and investigations. We hope that this report may act as early evidence and
validation for researchers looking to enlist machine learning methods in understanding the

complexities of nutrition understanding and food choice.
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