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Abstract 

We investigated if we can accurately predict the different types of choices consumers make 

given certain food label information. The dataset featured 4620 food choices from 154 

participants who chose in each experimental trial the healthiest option out of six options 

based on the nutritional information given. Using an auto machine learning software (h2o.ai), 

we trained a set of different algorithms to make binary choice predictions for whether 

participants would choose a particular type of option in the choice set, for example, if the 

least calorific option in the set would be selected. Predictive accuracy was generally >90% 

and the type of food and distinctiveness of the choice options contributed most strongly to 

predictions. We discuss how combining machine learning predictions with statistical testing 

could help us understand food choice decisions within its informational context.  



Researchers, public health bodies, companies, and even consumers themselves have 

expended much effort to encourage people to make healthier food choices (e.g., (Wartella et 

al., 2010b; World Health Organization, 2021). One way that national authorities have tried to 

inform consumers about the nutritional value of their choices is by mandating food to carry 

labels with nutrition information (Storcksdieck genannt Bonsmann et al., 2010; van den 

Wijngaart, 2002). However, measuring the effectiveness of this information is challenging, 

partly because determining the healthiest choice is complex and could vary for different 

individuals and food types (Food Standards Agency, 2008; Guthrie et al., 2015; Scarborough 

et al., 2007). It is thus informative to understand how food labels could inform different types 

of choices (e.g., minimising calories vs. minimising fat) and, indeed, what other elements—

be they inherent characteristics or external factors—affect the ability of food labels to guide 

participants towards making the healthiest choice out of the many options they may 

encounter when buying food.  

Modelling food choice and the role of machine learning 

Analysing what shapes food choice relies on modelling. One begins with an 

intuition—based on from theory or empirical observation—about the factors that generate 

differences in what people choose. In a simple model, one might expect that attitudes affect 

people's propensity to choose healthier choices; that is, if an individual is more positive about 

healthy eating, that individual should be more likely to choose the healthiest option than an 

individual who has a less positive attitude. This model can then be tested through the analysis 

of real data, typically assessing the variation observed in that data and how it can be 

attributed to the model factors. In our example, a researcher might assess the correlation 

between attitudes and choice, finding in the data that more positive attitudes are related to 

more selections of the healthiest choice. She might then assess whether this relationship is 

significant—most commonly operationalised as a less than 5% probability of finding such a 



result if a relationship did not exist, or "p < .05". This type of analysis—null hypothesis 

significance testing ("NHST")—compares the observed data distribution to a distribution that 

assumes the model is non-existent (hence the term "null") and is the most prevalent in 

psychology and the behavioural sciences (Bakker & Wicherts, 2011; Hubbard & Ryan, 2000; 

Yarkoni & Westfall, 2017).  

Increasingly, alternative methods to model behavioural data have been championed. 

For example, a Bayesian approach begins by encoding prior assumptions in the model (rather 

than the NHST) that is subsequently updated with incoming data to generate a posterior data 

distribution (Schönbrodt et al., 2017). Based on this data distribution, one can then quantify 

the likelihood of a proposed model (e.g., that attitudes and choice are related) to the 

likelihood of the null model. The Bayesian method therefore offers model comparison to 

understand which model bests fits—and thus explains—the data. Crucially, like with NHST, 

the focus is on explaining the data with the model, so there is a preference for models that 

minimise noise in the sample. 

In theory, one might expect explainability to be the goal of the investigation, since the 

variables that explain people's behaviour should also predict their future behaviour. However, 

in practice, the tools in the researcher's toolbox often sacrifice predictability from 

explainability because statistical analysis is prone to overfitting a model to the existing data 

(Yarkoni & Westfall, 2017). One can easily test any number of models with many variable 

combinations on a dataset until one finds the best fit (i.e., the one that reduces noise, or 

"error"). However, whether that model will then best explain a new sample is a different 

question---and one to which the answer is often "no". Therefore, it is informative to consider 

an alternative approach to analysis: examining the predictive ability of the model, that is, that 

is, whether the model and its included variables (also known as "features") can accurately 

predict future outcomes. It is from this angle that we approach our investigation of healthy 



food choice. We look at how accurately (and precisely) we can predict, based on known 

information about the individual and the circumstances of their choices, whether a consumer 

would make a certain choice.  

Prediction is primarily the goal in the field of machine learning. In contrast to the 

model-fitting approach (minimising variance), machine learning seeks to prioritises the 

model that minimises prediction error. This is typically done by training and testing the 

model on different datasets (Yarkoni & Westfall, 2017). This can be done through splitting 

the collected data into two samples, where the test (or "hold-out") sample approximates out-

of-sample data. Of course, splitting the data results in fewer observations for training, which 

can be problematic without a large dataset. Alternatively, one can "fold" the dataset such that 

in one train/test cycle, one fold is the training and the other the test set, with the cycle 

repeated for as many folds as one sets (Yarkoni & Westfall, 2017). Leveraging the techniques 

and principles of machine learning thus provides a good way to assess whether a model could 

_predict_ behaviour, rather than just explain it (see (Yarkoni & Westfall, 2017), for a 

summary of the core concepts of machine learning and how they can improve traditional 

psychological approaches to analysis). Furthermore, while some have argued that this 

generates the opposite problem---predictability without explainability (McGovern et al., 

2019) this actually depends on the complexity of the model used. A model with fewer 

variables or a straightforward decision-making process is clearer to interpret than one with 

many variables and interactions. Moreover, even with complex models, the machine learning 

literature suggests ways to quantify the contributions of variables in the models, for example 

by comparing the model predictions with the variable to predictions without it (Lundberg & 

Lee, 2017; Rodríguez-Pérez & Bajorath, 2020). 

Despite the benefits machine learning can offer to psychological research, it is only in 

recent years that machine learning has been applied as a novel method of investigation in the 



field. Within the area of food-related behaviour, there has been work investigating whether 

machines can judge nutrition better than humans (Rokicki et al., 2018), predict preferences 

for certain food types (Yu & Fu, 2020), and create healthier recommendations that align with 

health outcomes (Elsweiler et al., 2017; G. Mitchell et al., 2021; Panaretos et al., 2018). 

Gandhi et al. (in press) applied machine learning methodology to predicting healthiness 

judgements of food based on either the foods' nutritional information (e.g., amounts of fat, 

sugar, salt etc.), the associations of those food items with commonly used words, or both. 

Their models found that healthiness ratings for foods were indeed predictable—with accuracy 

rates of up to 91%. 

A few studies have also looked at some factors that predict actual food choice. For 

example, (Dalenberg et al., 2014) investigated how the emotions evoked by food predicted 

food choice, complementing an analysis using mixed-effects models with a "leave-one-out" 

cross-validation method that folded the data as many times as the number of observations—

effectively making isolated predictions for each observation (n = 123 in their case). Similarly, 

(Verwaeren et al., 2019) followed this approach (combining statistical inference with cross-

validation) to assess predictive accuracy for their models of children's food choice based on 

sensory characteristics of the food (from n = 149 children). (Elsweiler et al., 2017) used a 

machine learning approach to predict whether participants would select one recipe over a 

similar one (in a pair) based on characteristics of the recipe's title, images, ingredients, ratings 

from other users, and nutritional content. Their modelling included both cross-validation and 

out of sample testing, and reported 64-66% accuracy in predicting which recipe would be 

selected among just over 1,100 observations from around 100 participants. So far, this 

growing literature indicates that machine learning can be a promising tool to investigate food 

choice behaviours.  



Despite these promising indications, research in this area is still limited, especially 

compared to the wealth of studies in the wider food choice literature. An area within this 

literature that has received much attention is the use of nutrition labels, where investigations 

have spanned decades, including many systematic reviews about whether nutrition labels 

facilitate food choice (e.g., (Campos et al., 2011; Cowburn & Stockley, 2005; Grunert & 

Wills, 2007; Hersey et al., 2013; Hieke & Taylor, 2012; Soederberg Miller & Cassady, 

2015)However, to our knowledge, machine learning has yet to be employed in these 

investigations. We therefore add to this body of work by leveraging machine learning as a 

tool to understand how people determine the healthiest food item in a choice set from their 

nutrition labels. 

Nutrition labels and food choice 

Nutrition labels have been widely endorsed as a tool to improve the healthiness of 

consumer diets (OECD & Publishing, 2008), with the majority of Western nations mandating 

some form of nutrition labels (Storcksdieck genannt Bonsmann et al., 2010). An estimated 

80% of food products in Europe and the UK additionally adopt front-of-package (FOP) 

labels, which are posited to facilitate consumers' visual access to comprehensiveness 

information about key nutritional qualities of a food (Storcksdieck genannt Bonsmann et al., 

2010) and increase the chances of this information being used to judge food healthiness 

(Wartella et al., 2010a). There is, however, scant evidence that these labels have brought 

down obesity rates as they were intended to (Storcksdieck genannt Bonsmann & Wills, 

2012). One issue is of course whether people use labels; in general, people purport to use 

labels and find them more useful (Campos et al., 2011; Cowburn & Stockley, 2005) but 

actual usage is substantially less (Cowburn & Stockley, 2005; Higginson et al., 2002). The 

other questions is whether people use the labels effectively; here, empirical evidence is also 

conflicting. A number of studies reported that participants misunderstood labels (Graham & 



Mohr, 2014; Liu et al., 2019; Mackey & Metz, 2009) or misjudged food nutrition based on 

the information (Levy et al., 2000). Some studies reported that participants could not reliably 

select the healthiest option in a set given nutrition labels (Gorton et al., 2008). Yet others 

reported that most of their participants successfully used nutrition labels to pick the healthiest 

option (Barreiro-Hurle et al., 2010; Grunert et al., 2010). This may of course be a case of 

what type of label was tested, since some reviews have found that FOP labels with colour-

coding and text (compared to those without) facilitate selection of healthier choices 

(Cowburn & Stockley, 2005; Hersey et al., 2013). 

A different problem may be that in practice, it is not that simple to judge which option 

is the healthiest. In certain cases, if one option stochastically dominates all others (e.g., if the 

option is lower in fat, sugar and salt than all the others), it is clear this is the best. However, 

one will more commonly encounter situations where options perform best on one attribute 

but worst on another (e.g., lowest in fat, highest in sugar). One way to select may be to 

identify the option that is best on average across the attributes. Alternatively, one might also 

consider one attribute to be superior to the others (e.g., lowest in sugar). Such a strategy, 

known as "take the best", is a shortcut "heuristic" that people often employ (Scheibehenne et 

al., 2007). It may well be a rational and appropriate criterion due to an individual's personal 

circumstance (e.g., specific medical conditions). It is also worth bearing in mind that even 

experts do not necessarily agree on what is the healthiest option. In a study where dieticians 

and nutritionists in the UK were asked to select the healthier of two real food options (with 

nutrition labels), the experts only reached ≥80% agreement for the healthier product in 60% 

of the pairs (Food Standards Agency, 2008). (Scarborough et al., 2007) also found that 

nutrition professionals varied highly in their categorisation of the healthiness of some foods. 

Therefore, it is perhaps advisable to consider when consumers would make the best choice as 

determined by several different criteria rather than one single measure.  



One barrier to systematically assessing choices against each criteria is the danger of 

inflated p-values inherent in testing data multiple times. Using the traditional analytical 

approach of NHST, if one tests five different criteria for healthiness on the same choices, 

there is at least a 23% chance1 of finding a significant result. One could of course collect five 

different new datasets systematically to avoid this, however this requires additional time and 

resources. We propose that the advantages offered by machine learning, described above, 

present an opportunity to exploratorily analyse food choice data from different angles without 

"the tyranny of p-values" (Stang et al., 2010).  

Present research 

The rest of this paper is structured as follows. We first describe the food choice 

dataset, how it was obtained, and how choices were scored. Then, we then describe the 

models (including their predictor variables) and how they were trained and tested. We then 

present the modelling results: (i) the performance of the models when assessing choices for 

different healthiness criteria and (ii) the contribution strength of each predictor variable 

included in the models. Here, we include as well a test of the data using typical Null 

Hypothesis Significance Testing in a general linear model (GLM). The GLM was also 

assessed for fit and predictive accuracy and precision. This allowed as to compare the use of 

tree-based machine learning methods against the more commonly used GLM. Finally, we 

discuss the results in terms of relative model performance and the overall findings of our 

analyses. 

Model data 

About the dataset 

 
1 The familywise error rate, based on the typical /alpha/ = .05 significance level for just five 

comparisons = 1-(1-0.05)^5.  



The dataset consists of 4620 choices made by 154 participants (30 per participant). 

For each choice, participants chose the healthiest option out of a set of 6 randomised choice 

options, each depicted by a food label.  

In each trial, these 6 options depicted varieties of a type of food (taken from the 

dataset of real foods that was used in the expert study described above; FSA, 2008). The 

different categories were: ready meals, yoghurts, sandwiches, crisps, soups, and breakfast 

cereals. 

Each label showed energy, fat, sugar, and salt content for the food, with traffic light 

bands applied to fat, sugar, and salt (green, amber, red). %RI values were also provided as 

numerical figures, rounded to the nearest whole number. 

Choice predictions 

For each choice trial, participants' choices could be classified according to whether 

the chosen option aligned with the option in the given choice set that2: 

(i) Minimised the equally weighted average of %RI provided by each of the nutrients  

(ii) Minimised the equally weighted average across traffic light band categories for each of 

the nutrients (i.e., whether the option is likely to fall under red, amber, and green on average)  

(iii) For each of the following: Fat, Sugar, Salt, Energy3; 

(iv) Minimised the %RI for that nutrient 

(v) Minimised the traffic banding for that nutrient 

For each of these, we ran the models to ascertain what predicted choices that 

corresponded to that classification. 

Models 

 
2 Note that in each choice set, one option might correspond to more than one of the classifications above (e.g., a 
choice that minimised salt might also minimise sugar). 
3 As traffic light banding was not available for energy, we only included energy under the minimising %RI 
classification. 



Scripts and datasets to run the models are available at the following link: 

https://github.com/dlholf/foodml  

Data splits 

As our dataset contained sufficient observations (n = 4620), we elected to use a hold-out 

sample (our test set), with cross-validation of the initial models run on the training set using 

five validation folds. We split the data 80/20 into a training and test set4. For the cross-

validation folds, we used balanced resampling in the training set when there were imbalances 

of > 80/20 ratio in occurrences of the target. For example, 91% (4204) of choices 

corresponded with the option that minimised the average traffic light band on the label vs. 9% 

(416) did not. In contrast, 57% (2643) of choices corresponded with the option that 

minimised the average %RI of the nutrients vs. 43% (1977) did not. 

Model algorithms 

Using h2o.ai5, we trained a set of 20 base models (each tuned within the h2o.automl() 

function) to predict each choice alignment. Each model used 5 cross-validation folds within 

the training set, and was subsequently tested on a hold-out test sample. 

Each model used the following predictors: 

• Type of food (breakfast cereal, soup, ready meal, yoghurt, crisps, or sandwiches, each 

dummy coded) 

• Time taken to make choice 

• Demographics and individual characteristics: 

• Attitudes to healthy eating 

• Frequency of nutrition label use 

 
4 One exception was for choices that minimised sugar TFL bands, because of a massive class imbalance, which 
meant an 80/20 training/test split would have left < 5 items for test prediction. A 60/40 split was used in this 
case. 
5 https://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html 



• Factor considered important in determining food healthiness (reducing calories, fat, 

sugar, salt, or all, each dummy coded) 

• Age 

• Gender 

• Number of other criteria the choice also aligned with (e.g., that option might be the 

best for minimising energy _and_ fat) 

• Distance (in original units) between the best and second best option in the choice set 

Model selection (out of 20 automl base models) 

For each choice alignment variable (the DV), we selected the best performing model 

from the 20 automl base models. Model selection was determined by inspection of the 

confusion matrix of predictions in the test sets, seeking to minimise classification error rates 

across both types of correct classification (true positives and true negatives), but also 

prioritise minimising false positives over false negatives. For each DV, the results reported 

are based on the final selected model. 

Analysing model features 

We analysed the contributions of individual predictors to the models using: 

1. A trained surrogate model. This extracted the predictions made for the dataset (train and 

test sets) by each model and trained a single decision tree on the predictions. We then plotted 

the trees and their nodes, which are split based on relevant predictors. This gave a picture of 

the predictive variable (and its critical value) that led to resultant classification probabilities. 

2. Shapley's (SHAP) values of each predictor, which assigns each predictor an importance 

value for a particular prediction (Lundberg & Lee, 2017). The SHAP values compare what a 

model predicts with and without a predictor to determine that predictor's contribution (Paris, 

2020). These help us to identify whether predictors are making strong positive (i.e., 'yes') or 

negative (i.e., 'no') contributions in the model (Rodríguez-Pérez & Bajorath, 2020). 



The SHAP values can be visualised in two ways: 

(i) Plotting the SHAP values for each predictor shows the change in log odds for each 

individual data point in the sample (with its unique predictor value).  

(ii) Partial dependency plots (PDP) for individual predictors show a finer-grained evaluation 

of the change in SHAP values (i.e., the predictive contributions) across different predictor 

values. 

Results 

Model fit and performance 

Statistics for each of the classification models are presented in Table 1. We report the 

type of model used (in general, these were Gradient Boosted Machines, which are decision 

tree models), the AUC, log loss, mean per class error, mean square error, and three harmonic 

means (f) of precision and recall (Brownlee, 2020), along with the rate of false positives and 

false negatives and the total error rate observed when applying the model to the test set. 

The mean f1 is the ratio of precision (percentage of correct predictions—minimising 

false positives) to recall (percentage of correct predictions for the positive class—minimising 

false negatives). The mean f0.5 calculates the ratio with more weight on precision and less on 

recall (i.e., more importance on minimising false positives), while the mean f2 calculates the 

ratio with less weight on precision and more on recall (i.e., more importance on minimising 

false negatives).  

Model features and explainability 

We assessed the sign and magnitude of how the SHAP values were correlated with 

the actual values observed for each predictor variable in the data. Tables 2 and 3 report for 

each model the sign of the predictor and the relative magnitude of the correlation (as a 

ranking against other predictors in the model, where 1 reflects the most correlated predictor).  



Table 1.  

Statistics for the best classification model for each DV 

DV Model type AUC Log loss Mean per 
class error 

MSE Mean f1 Mean 
f2 

Mean 
f0.5 

False 
positive rate 

False 
negative rate 

Total error 
rate 

%RI classification models          

Minimise sugar %RI Gradient Boosted 

Machine 

1.00 0.08 1.75% 0.02 0.71 0.73 0.73 7.01% 9.89% 7.90% 

Minimise fat %RI Gradient Boosted 

Machine 

0.99 0.16 6.18% 0.04 0.72 0.76 0.72 5.76% 9.79% 7.03% 

Minimise energy %RI Extreme Gradient 

Boosted Machine 

0.99 0.14 4.53% 0.04 0.73 0.75 0.73 5.29% 14.5% 8.56% 

Minimise salt %RI Gradient Boosted 

Machine 

0.96 0.28 12.1% 0.09 0.62 0.66 0.63 14.4% 18.1% 15.6% 

Minimise average %RI Gradient Boosted 

Machine 

1.00 0.10 2.25% 0.02 0.80 0.78 0.84 7.51% 3.16% 4.94% 

TFL band classification models          

Minimise sugar traffic 

light band 

Gradient Boosted 

Machine 

1.00 1.22 0% 0.42 0.67 0.63 0.75 40% 0.05% 0.16% 

Minimise fat traffic 

light band 

Extreme Gradient 

Boosted Machine 

1.00 0.02 6.48% 0.01 0.77 0.72 0.86 0% 0.68% 0.66% 

Minimise salt traffic 

light band 

Gradient Boosted 

Machine 

0.99 0.36 2.93% 0.13 0.84 0.80 0.89 6.25% 4.05% 4.28% 

Minimise average TFL 

band 

Gradient Boosted 

Machine 

1.00 0.24 0.04% 0.07 0.84 0.79 0.90 0% 0.36% 0.33% 



Table 2.  

Rank and sign of predictor variables in the %RI prediction models 

Predictor %RI Sugar %RI Fat %RI Energy %RI Salt Average %RI Mean 
rank Sign Rank Sign Rank Sign Rank Sign Rank Sign Rank 

Food type: ready meal - 1 + 13 - 1 + 4 + 2 4.2 

Food type: yoghurt + 2 - 17 - 5 + 2 - 6 6.4 

Food type: cereal + 3 - 2 + 14 - 1 + 1 4.2 

Food type: crisps + 5 + 1 + 10 - 13 - 7 7.2 

Food type: soup + 6 + 4 - 13 + 18 - 5 9.2 

Food type: sandwich - 7 - 3 + 3 - 3 + 3 3.8 

Health concern: reduce sugar + 9 - 6 - 12 + 8 + 12 9.4 

Health concern: reduce fat + 14 + 10 + 7 - 9 + 14 10.8 

Health concern: reduce calories - 4 + 8 + 4 - 11 - 8 7 

Health concern: reduce salt + 15 - 5 - 2 + 7 + 16 9 

Health concern: reduce all - 17 + 7 + 6 - 14 + 18 12.4 

Age + 11 + 9 - 18 - 10 - 13 12.2 

Gender - 12 - 15 - 9 + 5 - 15 11.2 

Response time + 8 - 16 - 17 + 17 + 10 13.6 

Attitude to healthy eating - 16 + 14 + 15 - 16 - 17 15.6 

Nutrition label use - 18 - 18 - 11 - 15 + 11 14.6 

Number of other classifications + 13 + 11 + 8 + 19 + 4 11 

Distance from second-best option + 10 + 12 + 16 + 6 + 9 10.6 

Number of other options that were 

equally the best 

NA NA NA NA NA NA - 12 NA NA NA 

 



Plotting the SHAP values against the actual values of each predictor, as shown in the 

example for minimising %RI of sugar in Figure 1, illustrate the relative contributions of the 

predictors to the models.  

 

Figure 1. SHAP values and partial dependence plots for predictors of whether the option 

with the lowest %RI of sugar would be selected. 

 

 

Plotting a surrogate tree for each model allowed us to corroborate how the predictors 

were used in classification by a single decision tree. For example, as shown in Figure 2, the 

surrogate tree for minimising %RI of sugar shows the importance of yoghurts, cereals, soups, 

and how distinct the lowest-sugar option was from the other options in making predictions. 

Health concerns—i.e., whether the participant viewed reducing sugar, fat, calories, 

salt, or all of them as the most important in determining food healthiness—also did not 

consistently contribute to predicting selections in the same direction. For example, concern 



about reducing fat tended to predict the selection of lowest sugar, fat, energy, and overall 

%RI options, however it tended to predict non-selection of lowest fat %RI options.  

Other individual characteristics such as age, gender, attitudes, frequency of nutrition 

label use, and the speed of responses, were generally ranked lower in terms of how well they 

correlated with SHAP values, indicating a less linear relationship with selection. Again, none 

of these variables had a consistent sign of correlation with SHAP values across all the 

models, with each predicting selection for some products and non-selection for others. 

This tells us that there is clearly a trade-off to be made between the various products; 

and the same variables that help one to select the best option by one criteria may not be 

helpful with a different criteria. 

Overall, food type tended to consistently contribute to predictions, showing clear 

correlations between the predictor values and SHAP values. The sign of this correlation was 

never consistent across all models, however—for example, sandwiches, which most 

consistently contributed to predictions, predicted the selection of lowest energy and overal 

%RI options. However, they predicted non-selection of the other lowest options (sugar, fat, 

and salt).  

 



Figure 2. Surrogate decision tree for the prediction of selecting an option that is the lowest in 

%RI of sugar in the set.

 

 

  



Table 3 

Rank and sign of predictor variables in the TFL prediction models 

Predictor TFL Sugar TFL Fat TFL Salt Average TFL Mean 
rank 

 Sign Rank Sign Rank Sign Rank Sign Rank Sign 

Food type: ready 

meal 

- 4 - 6 - 5 - 12 6.75 

Food type: yoghurt - 5 NA NA + 2 + 3 3.33 

Food type: cereal + 3 NA NA + 6 + 2 3.67 

Food type: crisps - 7 NA NA + 3 + 4 4.67 

Food type: soup - 10 NA NA + 4 + 5 6.33 

Food type: sandwich + 1 - 8 - 11 - 7 6.75 

Health concern: 

reduce sugar 

+ 12 - 3 - 19 - 8 9 

Health concern: 

reduce fat 

- 8 + 1 - 12 + 14 8.75 

Health concern: 

reduce calories 

+ 9 - 2 + 9 + 9 7.25 

Health concern: 

reduce salt 

- 14 - 4 + 10 + 11 9.75 

Health concern: 

reduce all 

+ 19 + 7 + 15 + 13 13.5 

Age + 18 - 13 - 13 - 17 15.25 

Gender - 11 + 14 + 14 - 15 13.5 

Response time + 17 - 9 + 16 + 19 15.25 

Attitude to heatlhy 

eating 

+ 15 - 12 - 17 + 18 15.5 

Nutrition label use - 13 + 10 - 18 - 16 14.25 

Number of other 

classifications 

+ 6 + 11 + 8 + 10 8.75 

Distance from 

second-best option 

- 2 NA NA - 1 - 1 1.33 

Number of other 

options that were 

equally the best 

+ 16 + 5 + 7 + 6 9.25 

 

 

 



Contrast with GLM 

As part of the h2o.automl() process, we were also able to identify models that used 

basic GLM (a typical statistical model that identifies the best parameters, or coefficients, that 

fits an equation that includes the predictors to the data). For each of the models, we compared 

predictions under the GLM vs. best machine learning model and examined which predictors 

offered better explanations of the data. 

Overall, the GLMs performed worse. For example, the GLM for reducing %RI sugar 

had a 23% error rate in predictions (vs. 8% for the GBM model) and harmonic mean of 

precision/recall of 0.52 vs. 0.71 (meaning a lower false positive and false negative rate in the 

GBM model). The only instance in which a GLM outperformed the tree-based model in 

predictive ability was in reducing false positives for the model minimising sugar traffic light 

banding (20% false positives vs. 40%)—this was a case where the class imbalance was so 

high (>99%) that we should in any case be wary of overfitting.  

 



Table 4. 

Statistics for the GLM classification models 

DV AUC Log loss Mean per 

class error 

MSE Mean f1 Mean f2 Mean f0.5 False positive 

rate 

False negative 

rate 

Total error 

rate 

%RI classification models         

Minimise sugar %RI 0.82 0.47 23.2% 0.15 0.52 0.58 0.50 22.5% 24.7% 23.2% 

Minimise fat %RI 0.83 0.47 20.8% 0.15 0.53 0.59 0.52 23.5% 19.6% 22.3% 

Minimise energy %RI 0.88 0.40 21.1% 0.13 0.60 0.63 0.62 33.3% 13.5% 26.2 % 

Minimise salt %RI 0.80 0.50 26.6% 0.17 0.52 0.58 0.50 29.4% 26.3% 28.4% 

Minimise average %RI 0.92 0.36 12.6% 0.11 0.75 0.75 0.79 11.0% 10.4% 10.6% 

TFL band classification models         

Minimise sugar traffic 

light band 

1.00 0.003 21.4% < .001 0.91 0.87 0.96 20% 0.05% 0.11% 

Minimise fat traffic 

light band 

1.00 0.03 5.33% 0.01 0.86 0.81 0.93 28% 0.34% 1.10% 

Minimise salt traffic 

light band 

0.98 0.11 19.1% 0.04 0.88 0.85 0.93 12.5% 3.19% 4.17% 



Explainability via NHST 

We complemented our machine learning models with null hypothesis significance 

testing using mixed-effects models using the lme4 package in R. These models included 

random intercepts for participants in order to account for repeated trials in the data. For 

multicategorical variables (food type and health concerns), we used as the reference class the 

category that least contributed to predictions.  

While automl was able to run GLM-based classification models, the imbalances of 

certain categorical variables posed a problem for the model specifications for a mixed-effect 

GLM resulting in models that failed to converge for models with selections that minimised 

TFL values. We therefore confined our mixed-effects analyses to models with selections 

minimising %RI. 

Table 5 shows the odds ratios (and their respective p-values) obtained for each 

variable in the mixed-effects GLMs for the five %RI-minimising models. As found with the 

machine learning models, the variables did not have the same sign across all models, further 

supporting that different variables will be of predictive importance depending on which 

nutrient one wishes to minimise in one's diet—and the necessary trade-off in decision-making 

needed.  

Another similarity with the machine learning models was that regardless of which 

criteria was used to score the healthiest option, food type tended to have consistently large 

odds ratios in predicting whether the best option was selected—in some cases, even greater 

than the distinctiveness of that option and whether it was the best by more criteria (both of 

which one would sensibly expect to be consistent predictors of best-option selection). This 

underscores the importance of considering how different food types might affect how people 

use food labels to judge their healthiness.  



The contribution of what people were most concerned about in determining 

healthiness was comparably small, with each concern about 1.5 times on average more likely 

than the least concern to predict best-option selection (vs. not). 

Finally, demographic variables and individual differences in attitudes and nutrition 

label use had virtually no role in predicting whether participants would select the best option 

for most of the criteria. (The exception was gender, where females were 1.6 times more likely 

than males to pick the option with lowest %RI of salt as the healthiest.)  

Overall, these patterns align well on the whole with what we observed with the 

machine learning insights.  



Table 5.  

Odds ratios and significance of predictor variables in the %RI GLMs 

Predictor %RI Sugar %RI Fat %RI Energy %RI Salt Average %RI Mean 
absolute OR OR p OR p OR p OR p OR p 

Food type: ready meal 0.29 < .001 1.40 .090 0.05 < .001 0.02 .001 14.74 < .001 17.91 
Food type: yoghurt 7.37 < . 001 NA NA 0.20 < .001 27.59 < .001 0.12 < .001 12.07 
Food type: cereal 7.24 < .001 1.82 .001 NA NA 0.66 .460 3.45 < .001 3.51 
Food type: crisps 0.30 < .001 4.22 < .001 1.13 .464 4.60 .002 NA NA 3.32 
Food type: soup 1.15 .317 2.21 < .001 0.63 < .001 NA NA 0.80 .221 1.55 
Food type: sandwich NA NA 0.20 < .001 9.26 < .001 0.14 < .001 6.40 < .001 6.95 
Health concern: reduce sugar 1.64 .016 0.53 .010 NA NA 1.24 .274 0.96 .827 1.45 
Health concern: reduce fat 1.24 .398 NA NA 1.43 .122 0.73 .202 1.22 .326 1.31 
Health concern: reduce calories 0.57 .060 1.04 .188 2.89 < .001 0.70 .204 0.85 .457 1.66 
Health concern: reduce salt 1.32 .285 0.36 .001 0.86 .531 1.44 .091 0.86 .460 1.57 
Health concern: reduce all NA NA 0.73 .188 1.50 .030 NA NA NA NA 1.43 
Age 1.16 .204 1.00 .971 0.86 .165 1.05 .679 1.13 .191 1.04 
Gender 1.01 .944 0.74 .113 0.75 .108 1.62 .010 0.85 .290 1.30 
Response time 1.06 .193 0.98 .667 0.96 .432 0.97 .434 1.06 .271 1.04 
Attitude to healthy eating 1.02 .869 1.02 .819 1.03 .686 0.98 .787 0.97 .640 1.02 
Nutrition label use 0.99 .892 1.00 .999 0.95 .570 1.04 .713 1.08 .326 1.04 
Number of other classifications 1.28 < .001 3.06 < .001 6.35 < .001 1.10 .093 27.61 < .001 7.88 
Distance from second-best option 1.27 .028 2.86 < .001 1.18 .197 11.64 < .001 1.99 < .001 3.79 
Number of other options that 
were equally the best 

NA NA NA NA NA NA 1.44 .343 NA NA NA 

Note: Odds ratio (OR) < 1 indicate that the variable is _less_ predictive of selecting the option for the relevant column. Mean OR is calculated as 

the mean _magnitude_ (i.e., using the positive odds, i.e., the inverse of ORs < 1). 



Discussion 

Using an automated machine learning software (h2o.ai), we trained a set of 20 tree-

based model algorithms to predict in a dataset of 4,620 choice observations whether an 

individual picked the healthiest option (out of 6). We operationalised the healthiest option in 

different ways, running a separate set of models to predict whether a participant's chosen 

healthiest option was one that minimised: 

(i) the equally weighted average of %RI provided by each of the nutrients  

(ii) the level of %RI contributions each for fat, sugar, salt, or energy 

(iii) the equally weighted average across traffic light band categories 

(iv) the traffic light band category each for fat, sugar, or salt 

Overall, the models were able to predict whether participants picked the healthiest 

choice in >90% of instances (except for %RI of salt, where the total error rate was 

approximately 16%). For the majority of models, the false positive rate (i.e., predicting a 

healthiest choice when it was not the case) remained low (<10%), with acceptable false 

negative rates as well (i.e., failing to predict when someone picked the healthiest choice). The 

models were tested using cross-validation folds within the training sample (80% of the data) 

and again on a 20% holdout sample. Therefore, the error rates reported, which are from the 

holdout sample, reflect an ability to predict in a completely unseen dataset which healthy 

choices would be made.  

These results are comparable to those obtained in a few previous studies where 

machine learning techniques were able to predict participants' choice of food based on food-

evoked emotions (50-80% accuracy; (Dalenberg et al., 2014), sensory food characteristics 

(69% accuracy; (Verwaeren et al., 2019), and recipe characteristics (64-66% accuracy; 

(Elsweiler et al., 2017). We therefore add to the growing base of evidence about the strong 



potential for machine learning to predict—and subsequently understand—food choice 

behaviours.  

However, performance did vary across the different healthiness criteria we tested for 

in our modelling. Within the same food label, there were many different ways one could 

determine the food's healthiness: based on the numerical %RI value that indicates the 

contribution of 4 possible nutrients (sugar, fat, energy, salt), or the traffic light band colour 

given to 3 of the nutrients (sugar, fat, salt). For the %RI values, which are more precise, 

options could be differentiated on the basis of smaller differences, and a single option was 

most likely to be identified as the best for each nutrient (and more so for their average %RI). 

These %RI-based differences between options can often be small, to the point that one may 

wonder if they make any real difference to consumers. Past work has suggested that small 

differences in nutritional content still matter and can drive selection of one product over 

another (Miller et al., 2015). In our data, the model based on %RI differences had prediction 

rates of 84% (for selecting options with lowest salt %RI) to 95% (for selecting options with 

the lowest average %RI). This suggests that there are indeed variables in the the food 

information environment that can help us understand when consumers identify these finely-

differentiated options as being healthiest.  

In contrast to %RI information, for the traffic light bands, which capture a broader 

range of values within them, there was often more than a single option within the choice set 

that would be the best for a particular nutrient. The data prior to modelling suggested that the 

traffic light bands were to some extent effective: large proportions of participants selected the 

best choice under each of the traffic light band criteria (in the most extreme case, by 997:1 for 

sugar). Unfortunately, this resulted in sample imbalances that made it harder to predict when 

participants might fail to identify this best choice. In such cases, the model may learn to 

predict this is the default choice. For instance, predicting the healthiness of choices based on 



sugar traffic light banding (i.e., whether the "green" sugar option was selected) had an 

extremely high false positive rate (40%). Interestingly, despite also suffering similar 

imbalances in the sample, predictive accuracy for the other traffic light band criteria (fat, salt, 

average band rating) suffered much less from false positives. As such, there appear to be 

predictive variables that highlight when people select foods with labels that are "green" on 

average, or for fat or salt, but not sugar.  

What explains choices? 

One critique of machine learning models has been that there is low explainability, i.e., 

it is difficult to identify why the model predicted people would choose that option. However, 

it is possible to place a value on how much each predictor variable in the model contributes to 

a prediction (i.e., the SHAP value: a smaller SHAP indicates the variable is less important to 

the prediction, whereas a larger positive SHAP indicates the variable is more important for 

predicting a choice will be selected, and a larger negative SHAP indicates the variable is 

more important for predicting that the choice will not be selected). We correlated the SHAP 

values with the predictor values to determine the directional association between predictor 

and predicted choice. We were also able to assess the probability of a certain prediction based 

on different predictor values (i.e., through a surrogate model). We also ran a robustness check 

using GLM regression models to check the effects of the same predictors, which broadly 

corroborated with our machine learning analysis. Altogether, these methods allowed us to 

identify the features of the food information environment that might explain predictions.  

A key finding from this analysis was that people likely use different healthiness 

criteria depending on the type of food they purchase and, to a lesser extent, what nutrients 

they perceived as detrimental to health. Type of food was constantly an important contributor 

to predictions, but how it aided predictions varied across the healthiness criteria. For 

example, yoghurts and cereals were positively associated to predicting lowest-sugar choices, 



but these tended to predict higher fat choices. In contrast, lowest-fat choices were better 

predicted for crisps and soups, but these same foods tended to predict choices that were 

higher in average nutrient contribution. This suggests that low sugar may be a consumer 

criteria for picking the healthiest yoghurt and cereal, whereas low fat has more importance in 

selecting the healthiest crisps. Crucially, the fact that the direction of prediction varies for 

different foods reflects a trade-off people are required to make, where picking the lowest 

sugar product often means forgoing the lowest fat one. Indeed, this trade-off was visible from 

how participants' concerns about which nutrient should determine healthiness. As would be 

expected, these concerns positively predicted the respective healthiest choices—i.e., one's 

belief that reducing sugar is most important to determining health increases the prediction 

that one would select the lowest sugar option as the healthiest choice. However, believing 

that reducing sugar was most important also contributed to a less likely selection of the 

lowest %RI fat option; similarly for other nutrient reduction priorities. There was no one 

criteria (even best average reduction of all nutrients) that was also positively associated with 

lowering all of the possible %RIs, highlighting the complexity of making a food healthiness 

decision within a given food information environment. 

The variation in predictive explainability among foods—even for selecting the lowest 

average %RI option—also suggests that how one judges healthiness is likely not a simple 

matter of prioritising one nutrient in the decision. Indeed, concerns about individual nutrients 

were generally less strongly correlated with predictive contributions. Only salt and 

energy/calorie concerns were among the top five strongest contributors to any model's 

predictions—and in fact, concern about reducing salt was ranked higher in predicting higher 

energy and fat choices than in predicting lowest salt choices. This could mean that 

participants' beliefs about the healthfulness of nutrients did not strongly guide their choices—

or more likely, the beliefs were more complex than stated, and varied depending on the foods. 



Our findings here align with other recent work that people's existing knowledge about 

different food items is better able to predict how healthy they judge those foods to be, over 

and above the nutritional content of the food (although nutritional information can be helpful 

on top of that existing knowledge). For example, Gandhi et al. (in press) found that a model 

trying to predict food healthiness judgements by using linguistic representations of people's 

knowledge about the food items fared better (by about 12% greater predictive accuracy) than 

a model that simply used nutritional information to predict judgements—although combining 

both types of information in the modelling improved predictive accuracy.  

Contrary to what one might expect, other individual characteristics of participants 

such as demographics (age, gender), attitudes to healthy eating, and nutrition label use 

frequency had less importance in the models' predictions. Gender was important to the choice 

of lowest-salt products by %RI, where female participants were predicted to select these more 

than male ones, but this was the only instance in which demographic differences ranked 

among the top 5 predictors used by the models. Altogether this suggests a complex 

relationship between individual difference variables and the propensity to choose certain food 

options. However, the range of individual difference variables in our sample was fairly 

limited, since there would only have been 154 unique individuals in the dataset. With a larger 

and more diverse sample, it is still possible that these characteristics might take on more 

importance for predictions. However, we did already see that the direction of the predictive 

contributions from each variable varied depending on which criterion was modelled, and we 

would expect this to still be the case in a more diverse dataset. In other words, we might 

predict older participants to select lowest sugar and lowest fat options more, but lowest 

calorie options less. 

 

 



Limitations 

While our work offers greater insight on how machine learning methods could be 

leveraged to better understand the complexities involved in deciding whether something is 

healthy, it does have some limitations. First, although our sample sizes were comparable to 

other initial studies in machine learning and food choice (e.g., repeated observations from 

100-200 participants; (Dalenberg et al., 2014; Elsweiler et al., 2017; Verwaeren et al., 2019); 

Gandhi et al., in press), these are still small datasets (totaling observations in the thousands) 

compared to many datasets in the wider machine learning field (millions of observations, 

(Galeano & Peña, 2019; Gudivada et al., 2015); potentially billions, (Sh. Hajirahimova & S. 

Aliyeva, 2017)) and even some areas of psychology (Yarkoni & Westfall, 2017). Larger 

datasets are naturally beneficial in avoiding model overfitting to a specific dataset, since it 

becomes less likely for the model to learn patterns unique to the training data (Yarkoni & 

Westfall, 2017). While the crossfold validation and out-of-sample testing procedures we used 

for model predictions provide some measure of protection against overfitting, larger samples 

remain a better way to improve model generalisation and balance issues with under or over-

fitting. 

Second, our participants were drawn from a predominantly "WEIRD" (Henrich et al., 

2010) undergraduate student population, which may not be fully representative of the wider 

population. Our work presents more evidence for how machine learning methods could be 

applied to understanding food choice, but much more analysis of data from a wider 

population is needed to verify the insights we obtained from our limited data. This limitation 

cannot be understated: the danger of encoding biases from the training dataset into algorithms 

has been exemplified by high-profile cases where biased algorithms result in biased real-

world decisions, often to great detriment to already-disadvantaged minorities (Cathy O’Neil, 

2016; Eubanks, 2018). 



 

Conclusion 

As the application of machine learning methods to behavioural questions is still in its 

infancy, we believe our findings on a small scale are of value to shaping future research 

questions and investigations. We hope that this report may act as early evidence and 

validation for researchers looking to enlist machine learning methods in understanding the 

complexities of nutrition understanding and food choice. 
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