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Developing a Flexible Framework for Spatiotemporal
Population Modeling

David Martin,* Samantha Cockings,* and Samuel Leungy

*Geography and Environment, University of Southampton
ySchool of Civil Engineering and Surveying, University of Portsmouth

This article proposes a general framework for modeling population distributions in space and time. This is par-
ticularly pertinent to a growing range of applications that require spatiotemporal specificity; for example, to
inform planning of emergency response to hazards. Following a review of attempts to construct time-specific
representations of population, we identify the importance of assembling an underlying data model at the high-
est resolution in each of the spatial, temporal, and attribute domains. This model can then be interrogated at
any required intersection of these domains. We argue that such an approach is necessary to moderate the effects
of what we term the modifiable spatiotemporal unit problem in which even detailed spatial data might be inade-
quate to support time-sensitive analyses. We present an initial implementation of the framework for a case
study of Southampton, United Kingdom, using bespoke software (SurfaceBuilder247). We demonstrate the
generation of spatial population distributions for multiple reference times using currently available data sources.
The article concludes by setting out key research areas including the enhancement and validation of spatiotem-
poral population methods and models. Key Words: GIS, modifiable spatiotemporal unit problem, population,
spatiotemporal.

本文为模式化人口于时间及空间中的分布，提出一个一般性的架构，而这与逐渐增加中的需要明确时空

的应用范围特别有关；例如为灾害紧急回应的规划提供信息。我们首先回顾建立特定时间的人口再现之

企图，随后指认在每一个空间、时间与属性领域，以最高的解析度组合基础数据模型的重要性。此一模

型，可接着被整合进这些领域的任何必要交叉。我们主张，此一取径，对缓和我们称之为可调整的时空

单元问题之效应而言是必要的，在该问题中，即便是详细的空间数据，也可能不足以支持对时间具有灵

敏度的分析。我们使用定製的软件（SurfaceBuilder247），呈现将该架构运用于英国南安普敦案例研究的

初步实践。我们运用目前可获得的数据来源，展现多重参照时间中的空间人口分布之生产。本文以阐述

包含增进并确认时空人口方法与模型的关键研究领域作结。 关键词： 地理信息系统，可调整的时空单
位问题，人口，时间—空间。

En este art�ıculo se propone un marco general para modelar las distribuciones de la poblaci�on en el espacio y el
tiempo. En particular, lo anterior es pertinente para un creciente �ambito de aplicaciones que requieren especifi-
cidad espacio-temporal; para informar, por ejemplo, la planificaci�on de respuestas de emergencia a situaciones
de riesgo. En seguimiento a un estudio sobre intentos de construir representaciones de la poblaci�on centradas
en el tiempo, identificamos la importancia de estructurar un modelo de datos subyacentes a la m�as alta reso-
luci�on en cada uno de los dominios espaciales, temporales y de atributos. Posteriormente, este modelo puede
ser examinado en cualquiera de las intersecciones requeridas de estos dominios. Abogamos por la necesidad
de tal enfoque para moderar los efectos de lo que nosotros denominamos problema de la unidad espacio-temporal
modificable, circunstancia en la que incluso los datos espaciales detallados podr�ıan resultar inadecuados para
soportar an�alisis sensibles al tiempo. Presentamos una implementaci�on inicial del marco propuesto en un estu-
dio de caso de Southampton, Reino Unido, mediante el uso de software desarrollado especialmente para esa
tarea (SurfaceBuilder247). Demostramos la generaci�on de distribuciones espaciales de la poblaci�on para
m�ultiples tiempos de referencia usando fuentes de datos actualmente disponibles. El art�ıculo concluye
precisando �areas de investigaci�on claves que incluyen el mejoramiento y validaci�on de m�etodos y modelos
espacio-temporales de la poblaci�on. Palabras clave: SIG, problema de la unidad espacio-temporal modificable,
poblaci�on, espacio-temporal.
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C
onventional population mapping is based on
the representation of static count data within
static zone boundaries. Even when such maps

are created and presented through the apparently
dynamic media of geographical information systems
(GIS) or online mapping, these essential character-
istics remain unchanged. Population count data are
typically derived from census, survey, register
(Rhind 1991), or, increasingly, remotely sensed
(Deng and Wu 2013) sources and are associated
with specific reference times. An important but
rarely acknowledged deficiency of census and admin-
istrative sources is that they not only relate to a par-
ticular date but are primarily based on “nighttime”
residential location assumptions; in other words,
they represent a notional time when all members of
the population are at their residential address. This
is explicit in remote sensing approaches focused on
the distribution of nighttime light (Sutton et al.
1997). In reality there is no time when the entire
population is at residential addresses, although it
will be a close approximation to the true distribu-
tion in most neighborhoods in the middle of the
night. Recognition of very different nighttime and
daytime population distributions can be traced back
at least as far as Wirth (1938). There is increasing
demand for more realistic distributions, however,
and not simply nighttime and daytime, but ideally a
full representation of population time, to provide
statistics and maps relevant to the specific temporal
scope of the application. This is reflected in a grow-
ing number of studies concerned with, for example,
emergency planning, environmental risk assessment,
and accessibility modeling. These share a need to
assess population exposure at very specific times or
over time ranges that closely match the temporal
characteristics of a hazard such as a chemical release
(McPherson and Brown 2004; McPherson et al.
2006), natural disaster (Aubrecht et al. 2013), or
terrorist incident (Ahola et al. 2007) or the distribu-
tion of population at the time when a service is in
greatest demand (Turnbull et al. 2008).

Much work has been done in time GIS to develop
relevant ontologies, data structures, and query types
(Peuquet 2001; Yuan 2008; Pultar et al. 2010), but
there has been little overall advance with regard to
integration of mainstream population data sources or
the specific modeling required to estimate time-spe-
cific population distributions. Kwan (2004) provides
an individual-level view, bringing population trajecto-
ries into GIS using modern data sources and drawing

strongly on the seminal work of Hagerstrand (1970),
but this has not yet led to general conventions for spa-
tiotemporal representations of entire populations. This
article addresses the research challenge of developing
and implementing a framework for time-specific popu-
lation modeling, building particularly on the structure
presented by Ahola et al. (2007), itself based on Yuan
(1996) and Peuquet (1994). The objective is to set out
a conceptual framework and practical approach that
can be demonstrated within the contemporary data
environment but also offering rich opportunities for
further development. Attention is drawn to a chal-
lenge that we term the modifiable spatiotemporal unit
problem, an extension of the familiar modifiable areal
unit problem. We illustrate our conceptual framework
with a city-scale example from the United Kingdom,
but the approach is internationally applicable and of
increasing relevance in the face of rapid growth in
spatiotemporal data sources.

This article is structured as follows. The next sec-
tion reviews the literature concerning time-specific
population modeling, tracing growing recognition of
the need for better spatiotemporal information. In the
third section we propose a new integrated framework
for spatiotemporal population modeling, setting out
concepts and principles. The fourth section presents
our initial implementation of this framework, using a
purposely developed software tool and an empirical
example for Southampton, United Kingdom. The fifth
section discusses the limitations and potential of this
new approach. The article concludes by identifying
key issues and areas for further research.

A Review of Spatiotemporal Population
Modeling

Population mapping is a basic input to a wide range
of research and policy applications concerned either
with the spatial distribution of people or understand-
ing population-related processes. In many cases, the
ability to answer spatial queries is more important
than cartographic visualization. Numerous application
examples require more time-specific population distri-
butions than those presented by conventional popula-
tion maps. These include emergency planning
(McPherson and Brown 2004) and the organization of
accessible services and facilities (Turnbull et al.
2008). These types of analysis require population dis-
tributions relating to the same time periods as the ana-
lytical scenario; for example, the population affected
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by a hazardous event or available to use a service. In
the absence of such time-specific models, there contin-
ues to be widespread and inappropriate use of generic
residential population distributions. Attempts to
address this challenge have included both more time-
specific data collection and more time-specific
methods.

With regard to time-specific data collection, some
national censuses and administrative systems collect
information about individuals’ places of work and edu-
cation and might even incorporate alternative geo-
graphical zoning systems for these data (Coombes
2010; Martin, Cockings, and Harfoot 2013). This can
provide insights into two important daily spatial redis-
tributions of population but is severely limited by the
division of time into only two periods (work or school
time and all other times) and the exclusion of all indi-
viduals not engaged in those activities. By contrast,
Sutton et al. (1997) employed the de facto pattern of
light emissions as a proxy for aggregate nighttime pop-
ulation distribution, but this does not offer the finest
spatiotemporal resolution, nor is light directly related
to the location of human populations. Sutton, Elvidge,
and Obremski (2003) compared three methods for
estimating ambient population density, which repre-
sents an average of the night-time and daytime distri-
butions. Here, we are concerned not only with
nighttime, daytime, or ambient distributions but with
development of a rich temporal model that allows
identification of fine-grained population distributions
at any specified time.

We are not the only ones interested in modeling
dynamic populations. Emergent approaches could be
divided into those that essentially extend mapping
technologies within a time-enabled framework, as
here, and those that attempt to track population
movements through “big data” (Manyika et al. 2011),
such as mobile telephony or social media interactions
(Ahas et al. 2010; Birkin and Malleson 2013; Stefani-
dis, Crooks, and Radzikowski 2013). Although such
observational data are extremely powerful, complex
analysis is required to estimate population characteris-
tics and activity. Intensities of mobile telephone calls,
social media posts, and other trackable activities
themselves vary by time of day and participation rates
of population subgroups, making them challenging as
a basis for estimation of a complete dynamic popula-
tion distribution. A fuller understanding of the poten-
tial use of such data in monitoring population
dynamics will require novel methods, beyond the
scope of this article.

Attempts to produce time-specific methods have
mostly been based on the piecemeal reallocation of
population counts between locations in a conven-
tional population map or GIS. Schmitt (1956) was
concerned with the location and size of bomb shelters
in the Cold War era: “One of the most important and
difficult problems now facing city planners is the
development of accurate, usable techniques for esti-
mating the current daytime population of census tracts
in urban areas” (83). The most remarkable aspect of
this quotation is that the problem still persists after
nearly sixty years. Schmitt’s approach was to identify
data series that provided potential proxies for daytime
population, including the volume of telephone calls
originating from each census tract, in combination
with a variety of methods for converting these into
population estimates. Most complex of these was
termed the component method, involving division of
population into subgroups whose behavior could be
modeled and estimated through time and space. Few
data were available and the relative merits of possible
approaches were largely untestable. In another early
study, Foley (1952) focused on surveys of vehicle
movements for sixty-three medium and large U.S. cit-
ies, from which indexes of weekday population inflow
into the central business district were derived.
Although the scale of diurnal population change due
to vehicle travel could be estimated, the results related
only to this single movement and could be produced
only for cities with suitable surveys.

More recently, researchers attempting to develop
time-specific population distributions have adopted
solutions in which a census base is used for nighttime
and some combination of census data and relocation
of specific population subgroups forms the basis for a
daytime model. Sleeter and Wood (2006) used U.S.
census data for small areas, transferring working popu-
lations out of home areas during the daytime and redis-
tributing these onto workplace locations derived from
a business directory. School populations are similarly
reallocated. Their underlying spatial model is dasymet-
ric (Eicher and Brewer 2001; Mennis 2009), based on
the intersection of land parcels and census areas, but
the study area is small. McPherson and Brown (2004)
presented static daytime and nighttime models by
allocating population to residential and employment
locations. This work was developed by McPherson
et al. (2006) into a national gridded model for the
United States, but again the temporal division is only
daytime and nighttime. Importantly, the latter study
also attempts to model people in the transportation

Developing a Flexible Framework for Spatiotemporal Population Modeling 3

D
ow

nl
oa

de
d 

by
 [

W
in

ch
es

te
r 

Sc
ho

ol
 o

f 
A

rt
] 

at
 0

9:
18

 2
2 

M
ay

 2
01

5 



system, with particular emphasis on population transfer
to hospital following a hypothetical airborne release of
a hazardous substance. Their modeling includes explicit
estimation of indoor and outdoor populations.

The Landscan USA project (Bhaduri et al. 2007)
introduced some very powerful ideas and concepts but
has not to date published a generalized modeling
framework. The approach depends on specifics of the
available data sources, with a strong reliance on high-
resolution remotely sensed data. Work for the UK
Health and Safety Executive (Smith and Fairburn
2008) consists of a building-level GIS database with
population characteristics interpolated from small cen-
sus zones and only descriptive temporal attributes for
most spatial objects rather than a comprehensive spa-
tiotemporal model. Zhang, Sunila, and Virrantaus
(2010) offered a more explicit, object-oriented model
of building types such as office buildings, old people’s
homes, hospitals, hotels, and shops with the objective
of weighting population within different building types
at different times, again to inform emergency planning.

Other recent studies have produced detailed time-
specific population models for large facilities such as
airports, cruise ship terminals (Jochem et al. 2013),
and universities (Charles-Edwards and Bell 2013).
The former study employs flight schedules, seating
configurations for planes, passenger load factors, and
modeled cumulative passenger arrival times to esti-
mate the population landside within an airport termi-
nal at fifteen-minute intervals. Passenger statistics are
also used to estimate the daily population within ports.
The facilities chosen illustrate distinct temporal pat-
terns: regular, high-frequency activity (airports), ver-
sus lower frequency, seasonal trends (cruise terminals).
Similarly, in Charles-Edwards and Bell (2013), rou-
tinely collected public transport passenger statistics
and vehicle counts are combined with survey data to
produce estimates of service populations, taking
account of time of day, day of week, and university
term dates. These models incorporate a far more
sophisticated view of time than the conventional day-
time–nighttime classification, but geographical repre-
sentation is limited to a single, well-defined, site. To
date, these intensive local studies have not been fully
integrated with regional or national models, although
Jochem et al. (2013) forms part of the research con-
tributing to the Landscan USA project (Bhaduri et al.
2007), discussed earlier.

Ahola et al. (2007) shared the widespread interest
in modeling time-specific populations for emergency
planning, specifically for fire and rescue services in

Helsinki, Finland. Their work is notable for use of a
sophisticated space–time model of population, based
on Yuan’s (1996) three-domain model. Spatial, attri-
bute, and temporal information are treated as three
separate, linked domains to describe the spatial behav-
ior of a population. Spatial locations relate to streets
and buildings, the attributes of which are defined in
terms of usage by different population subgroups asso-
ciated with different times. They modeled fourteen
different time periods such as “week morning” and
“Sat. evening” (Ahola et al. 2007, 946) based on tem-
poral variations in the available data. Their population
was divided into ten subgroups such as students and
children. Most of the values used to allocate popula-
tions to activities and times are based on expert
knowledge rather than empirical data.

Despite the wide variety of geographical referencing
found on input data sets, several of these studies esti-
mate time-specific populations for cells in a regular
geographical grid. The advantage of the grid over
irregular areal units is stability over time, whereas
units devised for purposes such as census enumeration
tend to be periodically revised and also to relate
strongly to population distributions at specific times,
such as the implicit connection between census geog-
raphies and nighttime residential population distribu-
tions. Further, gridded population models facilitate
integration with the results of modeled environmental
data (Fielding 2007).

In summary, we have identified a range of studies
concerned with producing more time-sensitive spatial
population distributions. These adopt a range of spatial
resolutions but are typically comparable with the
smallest geographical units used for contemporary
static population mapping. With regard to time, the
principal division is simply into daytime and night-
time, although Ahola et al. (2007) achieved a consid-
erably more sophisticated fourteen-way classification.
Nevertheless, the use of a discrete representation of
time inherently limits the flexibility of the modeled
data. Spatial locations display wide variation in tem-
poral behaviors, such as slightly different lengths of
working day, holiday patterns, and seasonal variations,
many of which are cyclical in nature. Any specific spa-
tiotemporal query needs to be able to interrogate the
intersection of all these temporal patterns and not be
constrained by a small number of predetermined classi-
fications of time, even if the spatial resolution is high.
At present, a building-level model of a city may be
assigned only generalized daytime and nighttime activ-
ity patterns.
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This is analogous to a concept already very familiar
to geographers. The modifiable areal unit problem
(Openshaw 1984) refers to the sensitivity of analysis
to imposed aggregation units. The temporal equiva-
lent has been termed the modifiable temporal unit
problem (Ç€oltekin et al. 2011; de Jong and de Bruin
2012), in which an imposed aggregation of time into
discrete categories (whether two-way or fourteen-
way) has the potential to distort and restrict subse-
quent analysis. We suggest that any serious attempt
to build spatiotemporal population distributions needs
to engage with the combination of these two phe-
nomena, something that might best be termed the
modifiable spatiotemporal unit problem, a phrase
coined by Jacquez (2011) but which has not been
adopted in the geographical literature. Analysis that
is spatially detailed but temporally coarse might be
just as likely to impair analysis as that which is tem-
porally detailed but spatially coarse. The modifiable
areal unit problem cannot be “solved,” but resilience
is achieved when data are referenced to the smallest
possible areal units, allowing purpose-specific aggrega-
tions (Openshaw 1984). By extension, what is needed
is an equivalent model for spatiotemporal data, per-
mitting the finest possible spatial and temporal divi-
sions to be retained and aggregated in ways best
suited to specific analyses. Current attempts to extend
time-blind population GIS applications into only day-
time and nighttime models fall far short of this ideal.

Yuan (2008) observed that GIS technology is par-
ticularly lacking in the ability to handle spatiotempo-
ral data. It is not the objective of this research to
develop new approaches to time GIS in general, but it
is likely that the relative weakness of mainstream GIS
in this respect has inhibited development of more
sophisticated time-specific population models. The
GIS data structure and query architecture proposed by
Pultar et al. (2010) are very much in sympathy with
the approach proposed here.

A Proposed Framework for Spatiotemporal
Population Modeling

Building on the approaches already reviewed, which
have offered largely bespoke methods for the genera-
tion of time-specific population maps, we propose a
general framework for spatiotemporal population esti-
mation. Our intention in specifying such a framework
is to set out the essential concepts and requirements,
which could subsequently be implemented using a

variety of algorithms and data sources. We offer one
such implementation in the following section. Like
Ahola et al. (2007) and Pultar et al. (2010), we draw
a distinction between the data model and its derived
outputs. Importantly, we argue that it is necessary to
employ a fine-grained representation not only of space
but also of time, to address the modifiable spatiotem-
poral unit problem and achieve the flexibility to
undertake sophisticated spatiotemporal analyses. We
propose an essentially dasymetric (Wright 1936;
Eicher and Brewer 2001; Mennis 2009) and volume
preserving (Tobler 1979) approach, in that total popu-
lation is redistributed across space subject to a series of
weights and constraints based on ancillary data. A
novel feature of our approach lies in the adjustment of
these spatial constraints based on temporal profiles
associated with human activity at each location.

Our general framework treats the population pres-
ent (PP) as the sum of three categories: resident popu-
lation (PR), nonresident population (PNR), and
population in transit (PT). Population could be
divided into subgroups (e.g., by age or economic activ-
ity) and there is continuous movement of these sub-
groups over time among the three categories and
between locations. In generalized form, PPI,c,t repre-
sents the population of subgroup c present at location I
at time t:

PPI;c;tD
XI

i

PRi;c;tC
XI

i

XK

j

PNRi;c;twi;j;t

¡
XI

i

XK

j

PNRj;c;twj;i;tC
XK

j

XK

k

PTjk;c;tvjk;I;t;

(1)

where I, the unit of analysis, could itself contain multi-
ple locations i. Both I and i could be referenced as
points, areas, or grid cells, depending on the scale of
analysis. In the implementation presented in this arti-
cle, I are grid cells, each containing i points. PRi,c,t is
the population of subgroup c resident at location i at
time t. The sum of population present in I is increased
by the sum of the nonresident population at each i
(e.g., incoming employees at their places of work),
drawn from all other locations j in the entire study
area, where j D 1, . . ., K, based on the specific interac-
tion weighting wi,j,t of location i with respect to loca-
tion j at time t. Conversely, the population present is
decreased by the sum of the nonresident population
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(e.g., residents who have gone elsewhere to work) at
all other locations j drawn from each i. The final term
relates to the population in transit through I at time t
between every pair of locations j and k (but not i)
based on the specific weighting vjk,I,t of each flow
through location I at time t. As every population
member can be counted only once, the population in
transit does not include those whose journeys begin or
end within I; these are accounted for within the PR
and PNR terms. This generalized model shares charac-
teristics with many of the methods reviewed earlier,
although there have been various foci of attention; for
example, t taking values of only daytime or night-
time, identification of differing subgroups c, or omis-
sion of the population in transit PT.

Our proposed framework includes both a data sys-
tem and an analytical system to support this general-
ized model. The data system provides a structure for
representation of all the spatiotemporal objects of
interest. The analytical system provides the means to
interrogate these data to answer specific queries. These
systems are represented diagrammatically in Figure 1,
with the data system above the dotted line and the
analysis system below. The numerical values in
Figure 1 are purely illustrative. We argue that to
advance spatiotemporal population modeling, it is
necessary to have a consistent approach to the design

of all the elements in these systems. In this section of
the article, we focus on concepts and methods. Data
sets, software tools, and implementation are covered
in the following section. Similar to Yuan (1996), our
data system in Figure 1 includes three domains: spatial
containers (top), temporal characteristics (left), and
corresponding attributes (right). In practice, these are
closely related and interpretation of each is only fully
possible with reference to the others; hence the trian-
gular structure.

The first domain of this data system relates to spa-
tial containers of human activity (Hagerstrand 1970;
Ahola et al. 2007), which are our basic spatial objects.
These are denoted by i, j, and k in Equation 1 and illus-
trated by i1, i2, j1, and j2 in Figure 1. These containers
could be represented at a variety of scales, from small
aggregations such as census zones or street blocks to
individual buildings, and georeferenced by point coor-
dinates or boundaries. Where point coordinates are
used, additional information could indicate spatial
extents (e.g., the extent of a large site or building or a
census area).

Spatial containers could be of two types, which we
term origins and destinations. Origins (i1 and i2 in
Figure 1) are a special set of containers, the sum of
whose resident populations (PR) represents the entire
population to be modeled. Examples would be output

Figure 1. Proposed framework for spatiotemporal population modeling.
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zones from a national census, providing estimates of
total population at places of residence. The sum of the
population in these containers, plus or minus any
known population flows into or out of the study region,
is key to the requirement of volume preservation: The
total population present (PP) may be reallocated
between containers during the modeling but can be
neither gained nor lost.

We term the second type of population container
destinations (j1 and j2 in Figure 1). These represent
additional locations with nonresident populations
(PNR). Major categories include places of work, edu-
cation, health care, leisure, and retail activity. Their
population capacities reflect the maximum numbers of
workers, students, patients, or customers present at
any one time. Individual locations could be of either
origin i, destination j, or both types, depending on the
presence of PR, PNR or both. The data describing
these groups will often come from different sources.

At any point in time, there will be a large number of
people who are not present at any fixed location (PR or
PNR) but are in transit between containers (PT). The
size of this population could be estimated by examin-
ing the numbers of people arriving and departing from
destination containers in adjacent time periods. The
background space between containers is an aspect of
the spatial domain not fully addressed by other
researchers. A layer of background features (indicated
as a second layer of the spatial domain in Figure 1)
informs the likely spatial distribution of PT. Relevant
features include links in the transportation system,
through which population moves between origins and
destinations, and land use classes that cannot contain
population, such as open water or extremely remote
and inaccessible regions.

Central to the framework proposed here is the
treatment of temporal characteristics, the second
domain of the data system. Ahola et al. (2007) noted
that temporal understanding of population can only
be obtained by collecting details of daily and weekly
activities and that this is not a complete record of
population movement but, rather, a set of observa-
tions and assumptions. Each spatial container may be
allocated one or more time profiles, represented by
the graphs on the left side of Figure 1, describing the
population present as a proportion of total capacity,
over time. A key difference from previous approaches
is that rather than adopting predefined reference peri-
ods (e.g., daytime or week morning), any number of
specific and continuous time profiles could be used.
These might span a wide range of timescales, from

seasons and term dates through to clock times
describing the working day. Thus, a term–time school
day could be given a profile involving 95 percent of
enrolled students being present from 8:30 a.m. to
4:00 p.m. with phased arrivals and departures at the
beginning and end of the day. If sufficiently detailed
information is available, different profiles could be
used to describe the same location during holiday
periods, weekends, or different terms. Individual
schools could have similar, but unique, profiles
reflecting their different timetables, term dates, or
attendance rates. Conversely, a single time profile
could be applied to multiple containers. Most activity
patterns are cyclical but could be disrupted by special
events such as public holidays, for which specific time
profiles could be constructed. The objective of retain-
ing this detailed information is to maximize flexibility
for reaggregation as required by any (unknown) future
analysis.

The third domain of the data system comprises the
attributes of the spatial containers. These include pop-
ulation subgroups c that share important activity pat-
terns, indicated by columns PRc1, PRc2 and PNRc1,
PNRc2 in the right attribute tables in Figure 1. For
example, children in a given age group might be
assumed to participate in a particular level of school
education. In some cases, a subgroup could be identi-
fied as immobile, in the sense that all their activity is
restricted to their origin location. Prisoners are an
obvious example, but others could exhibit extremely
limited mobility, such as the very elderly. Each desti-
nation container has one or more time profiles and
associated catchments representing the area from
which origin populations could be drawn to participate
in activities. These catchments may take a variety of
forms and provide the interaction weights wi,j,t in
Equation 1, simplified as column W in Figure 1. Addi-
tional attributes associated with each container such
as its spatial extent or mobility of population
subgroups could also be included.

A hierarchical structure applies in all three of the
spatial, temporal, and attribute domains, reflecting the
principle of indivisibility (Hagerstrand 1975). It is crit-
ical for overall volume preservation that the entire
population be accounted for in the spatial domain at
any time. Ideally, a high resolution should be modeled
in all three domains, but the overall framework is able
to encompass multiple levels of hierarchical subdivi-
sion. Thus, the approach could be implemented
whether residential populations are available for cen-
sus output zones, street blocks, or individual buildings.

Developing a Flexible Framework for Spatiotemporal Population Modeling 7
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Similarly, the students enrolled at a university could
be assigned to one single location and time profile or
subdivided into different faculties, buildings, and time
profiles, but the subdivided components must always
sum correctly to the next level in the hierarchy. One
advantage of this property is its extensibility: As more
detailed spatial, temporal, or attribute data become
available, they can be incorporated by subdivision of
existing elements.

The data system presented here incorporates all
aspects of population distribution in space and time,
held at the highest possible resolution, while recogniz-
ing that this might still include some aggregation.
This resolution is essential to support the diversity
of potential spatiotemporal analyses. The system is
able to accommodate a great variety of real-world
complexity; for example, a school could be occupied
by local children engaged in education during the
day, by adults from a wider area engaged in sports and
social activities during the evening, and unoccupied at
night.

The second system in our framework is that which
relates to spatiotemporal analysis and appears below
the dotted line in Figure 1. Analysis begins with the
specification of a spatiotemporal query (at its simplest,
a study area comprising units of analysis I and query
time, t). Equation 1 summarizes the estimation of
population distribution across a unique intersection of
spatial, temporal, and attribute domains. This intersec-
tion identifies the population subgroups present at
each container at the specified time, as illustrated for
j1 by the dashed lines in Figure 1. Answering a query is
not simply a retrieval from a database but involves
evaluation of every relevant element and aggregation
to the spatial units of analysis I.

In the implementation illustrated here, population
is reallocated from origin to destination containers by
simple weighted allocation to nearest destinations or
to meet known proportions of population traveling
from successive distance bands (recorded in travel-to-
work data). This approach accommodates overlapping
catchment areas and preserves total population vol-
ume but does not take account of complex flows to
nonnearest facilities. Time profiles and catchment
areas could either be derived from formal sources such
as school timetables and official catchment definitions
or obtained through administrative or survey data,
such as customer numbers and distances traveled to
retail outlets. The potential for using more sophisti-
cated spatial interaction models is considered later in
the discussion section.

Background weights and outputs must all be calcu-
lated for the chosen units of analysis I. Background
weights V are calculated from the background feature
layer to represent the distribution of population in
transit for each unit of analysis I at time t. In the
mapped representation of the modeled output in Fig-
ure 1 (lower right) and in our implementation here,
the analysis units I are grid cells and thus a background
weight is calculated for each cell. Depending on the
nature of the query, the output could then be explored
in a variety of forms, such as mapped representations,
data tabulations, or statistical analyses.

Even a relatively simple scenario reveals the com-
plexity of spatiotemporal analysis. An emergency
planner might be concerned to estimate the number of
workers present in a mixed residential and industrial
district on a weekday at lunchtime to assess the
impacts of an airborne chemical release, the scenario
explored by McPherson et al. (2006). This would be
very hard to estimate using conventional population
data sources and representations. It requires each of
the spatial (business and residential locations i, j, k),
temporal (weekday lunchtime t), and attribute (factory
worker and resident population PNRc, PRc) domains to
be interrogated and population to be estimated for this
unique space–time–attribute combination. More com-
plex analyses might require accumulation of data over
time ranges; for example, to assess population exposure
to environmental pollutants over the period of a haz-
ardous event.

Implementation

In the previous section, we proposed a novel flexible
framework for spatiotemporal population modeling. In
this section we present our initial implementation,
using a software tool called SurfaceBuilder247, which
we have developed in a .NET environment (Martin
2011). We use for illustration a simple example for the
city of Southampton on the south coast of the United
Kingdom. The 25 km £ 25 km study area is shown in
Figure 2, although the input data sources are all avail-
able at the national level and it is only the example
that is restricted to this study area, for reasons of pre-
sentational clarity. The main urban area of Southamp-
ton, with a 2006 residential population of 228,700
(Office for National Statistics 2010), is included in its
entirety, along with surrounding settlements. The
focus here is not on specific details of the area but on
practical application of the framework, with the aim
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of demonstrating the feasibility of our proposed meth-
ods. We do not provide detailed evaluation of the
many data–set–specific decisions that would be neces-
sary precursors to a substantive application.

We use a gridded population modeling strategy for
the outputs, gaining the advantages of stability over

time and ease of integration with environmental mod-
els that have been noted earlier. Computationally, we
build directly on previous algorithms that operated in
only the spatial and attribute domains, redistributing
population from centroid locations onto a grid but
without a temporal component (Martin 1989, 1996).

Figure 2. Southampton study area, with inset showing location within England and Wales (contains Ordnance Survey data � Crown
copyright and database right [2005, 2013]).

Developing a Flexible Framework for Spatiotemporal Population Modeling 9
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Table 1. Data sets used in Southampton case study

Population subgroups/
containers

Reference
date

Geographical
reference

Data source URLs (accessed
13 January 2014) Notes

Time
profile

Origins
Residential
locations

2006 2001 Census OA
centroids

2001 Census; 2006 MYE
http://www.ons.gov.uk/;
2006 NSPD http://edina.ac.
uk/census/ (registration
required)

2006 MYE populations
weighted onto 2001 OA
centroids using 2006
NSPD delivery point
counts

N/A

Immobile
populations

2001 2001 Census 2001 Census communal
establishment residents
http://www.ons.gov.uk/

Prison, care home
populations treated as
immobile

N/A

Destinations
Workplaces 2006 2001 OA centroids 2001 Census https://www.

nomisweb.co.uk/ 2006 ABI
data set http://www.ons.
gov.uk/ (subscription
required) 2006 NSPD
http://edina.ac.uk/census/
QLFS http://www.ukdataser
vice.ac.uk

2006 ABI workplace
population estimates,
Lower Super Output
Area level, weighted
onto 2001 OA centroids
using 2006 NSPD
business postcodes; OA-
level census travel to
work by distance bands

Working patterns by
standard industry
classification groups
derived from QLFS

Educational
establishments
Schools 2005 Grid reference of

establishment
2005 EduBase data http://

www.education.gov.uk/edu
base/ Neighbourhood
Statistics locations http://
www.neighbourhood.statis
tics.gov.uk/

Enrolled student counts for
school and college,
September 2004

Terms and hours
estimated clerically
from education
authority Web sites

Universities 2006 Postcode grid
reference of
main site

2006 Higher Education
Statistics Agency data
http://www.hesa.ac.uk/

Enrolled student counts for
2006–2007

Terms and hours based
on University of
Southampton
calendar and travel
survey

Hospitals 2006 Postcode grid
reference of
hospital site

2006 Hospital Episode
Statistics http://www.hscic.
gov.uk/hes

Inpatient, outpatient, and
A&E patient numbers
for provider/trust
weighted to hospital site
by number of beds

Inpatients allocated by
length of stay;
outpatients by
working day; A&E
over 24 hours

Background
Roads 2006 Road network Ordnance Survey Meridian

https://www.ordnancesur
vey.co.uk/opendatadown
load/products.html
DfT AADF by area, road,
and vehicle type for 17 time
periods http://www.dft.gov.
uk/traffic-counts/

AADFs interpolated onto
roads by vehicle, road,
and area type from
National Transport
Model

17 DfT traffic flow time
periods covering
7-day week

Land surface 1991 Mean high water 1991 Census MHW polygon
http://edina.ac.uk/census/

MHW not available for
2001 Census; 1991
coastline used as mask

N/A

Note: OA D output area, MYE D midyear estimates; NSPD D National Statistics Postcode Directory; ABI D Annual Business Inquiry; QLFS D Quarterly
Labour Force Survey; A&E D accident and emergency; DfT D Department for Transportation; AADF D annual average daily flows; MHW D mean high
water.
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Our background weights are therefore calculated as
raster GIS layers, with grid cells I being the spatial
units of analysis.

The data sources used in the case study are listed in
Table 1. For illustration, we here use a model based
only on residential, workplace, educational, and
health care containers, with a reference year of 2006.
This year represents the midpoint between censuses
and is one of the first years for which sufficient data
regarding these activities became available. The avail-
ability of national data has developed rapidly since
2006, but at the time of writing, publication of the
relevant 2011 census outputs was not complete. Our
principal data sources are the 2001 census, 2006 mid-
year estimates (MYE), Annual Business Inquiry
(ABI), Edubase and Higher Education Statistics
Agency (HESA) educational institution data, Hospi-
tal Episode Statistics (HES), National Statistics Post-
code Directory (NSPD), with additional data from
Department for Transport (DfT) and Ordnance Sur-
vey for background mapping and Quarterly Labour
Force Survey (QLFS) for industry-specific time pro-
files. Web sites and notes for each data source are pro-
vided in Table 1: Some are openly downloadable,
whereas others require registration or subscription.
Each requires data linkage and estimation prior to use
in our spatiotemporal modeling. Original counts from
the input sources are not recoverable by analysis of the
output layers.

The data system presented in the previous section
is implemented as a library of .csv format data files
following a standard structure, described in detail in
Martin (2011). The principal input file type is a list
of spatial containers, with one record per container.
The same basic data are required for all containers,
albeit with some attributes being specific to origins or
destinations. The core structure is illustrated sche-
matically in Figure 1 and includes spatial location
and population counts for one or more population
subgroups. For origins, these counts include the
source populations for the model, whereas for destina-
tions they are population capacities. Additional
attributes unique to origins include information about
the mobility of each subgroup. Additional attributes
unique to destinations include reference to relevant
time profiles, the spatial extent of the destination
itself, and its catchment area. Each file includes meta-
data on sources and format. Default values are pro-
vided for each variable (e.g., age-specific mobility
rates), which can be replaced by container-specific
values, if available.

In this example, population origins are 2001 census
output areas (OAs). These are the smallest zones for
which tabular census results are published, having a
mean of 300 usual residents. 2006 MYE data for larger
units known as Lower Layer Super Output Areas
(LSOA), with mean of 1,500 usual residents, have
been allocated to OAs weighted by address counts
drawn from the 2006 NSPD to produce OA popula-
tion estimates for 2006. Each OA is represented by a
population-weighted centroid and seven age and
activity groups (preschool, three divisions of school
age, working age divided into students and nonstu-
dents, retirement age). The example uses a term–time
population definition when locating students with dif-
ferent home and term–time addresses.

We exemplify the destination files with reference to
education containers. Locations for all schools and
universities have been obtained from national data
sets (Table 1). Most are available as unit postcodes
(the smallest units in the UK postal system), which
are readily georeferenced to points using standard
lookup tables. Each container has population capaci-
ties (numbers of students enrolled) in one or more age
groups, reflecting the type of institution. Default val-
ues of site sizes and catchment radii have been esti-
mated based on typical values for each type of
institution. In this case, simple circular catchment
areas have been defined in terms of proportions of the
student population expected to travel over specified
distance bands (discussed, e.g., by Martin and
Atkinson 2001), although a range of more detailed
catchment area descriptions could be incorporated
where local data are available. Comparable procedures
have been followed for employment and health loca-
tions using the data sources shown in Table 1. Exact
reference dates vary, but 2006 midyear values have
been used wherever possible.

Weights (V) for the background layer are here pre-
pared as simple GIS raster layers matching the
intended analysis resolution (I). For the Southampton
study area, these are based on locations of roads from
the OS OpenData Meridian layer and average annual
daily flow (AADF) traffic data from the DfT National
Transport Model (NTM; Department for Transport
2009). Coastal and open water areas are zero-weighted
and all other areas assigned estimated counts of people
traveling, using the DfT data on traffic flows by vehicle
occupancy and vehicle, road, and area type, thus esti-
mating the spatial distribution of population in transit.
This example takes no account of other modes of
transport.

Developing a Flexible Framework for Spatiotemporal Population Modeling 11
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Time profiles are provided in separate files, listing
the proportions of population present and in transit
associated with different destination types at each
time of day. Time intervals are not predetermined and
here we use fifteen-minute intervals. For each of pri-
mary, secondary, and university working days, profiles
are derived from published local education authority
and survey data. For employment, these are based on
analysis of the QLFS, which includes questions about
hours worked and is coded by Standard Industrial Clas-
sification (SIC). We estimate time profiles for each
SIC code reflecting differing patterns of work and
assign these to places of employment. Population in
transit is derived from the population arriving and
departing each destination and the time taken to
travel within its catchment area. Our time profiles are
illustrative rather than definitive and could be
replaced with detailed local information wherever it is
available.

The SurfaceBuilder247 software executes a spatio-
temporal query on these files, following the processing
sequence illustrated in Figure 3. In the following
explanation, letters refer to the elements in Figure 3.
A run begins with the specification of all of the
parameters necessary to describe the query, input data
library, modeling, and outputs (A). Each identified
population subgroup is processed separately in a

complete run (B). Processing proceeds for the user-
specified study area plus a geographical buffer of a
width chosen to capture all local population move-
ments into or out of the study area. A first pass
through all origin data sets (C) identifies any immo-
bile populations (D) and transfers these directly to an
output layer (E). The remaining population in the
origin containers is available for potential redistribu-
tion by the model. The principal processing loop vis-
its each destination container in turn (F) and
interrogates its associated time profile (G). The time
profile indicates the proportion of its capacity popula-
tion that is expected to be present at the query time,
both at the destination and in transit within its
catchment area (H). The destination population is
handled in two stages. First, the population present at
the destination is transferred from origins within the
specified catchment area (I). This population is allo-
cated within the spatial extent of the destination (J).
Second, the population in transit is allocated across
the catchment area (K) in proportion to the weights
in the background layer (L). As the populations asso-
ciated with each destination are redistributed, they
are accumulated in an output grid layer (E). Once all
destinations have been processed, any population
remaining at the origin locations (M) is locally redis-
tributed around the input locations using the original

Figure 3. Processing sequence implemented in SurfaceBuilder247 program.
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SurfaceBuilder algorithm (N) and it, too, is trans-
ferred to a further output layer (E). At the end of the
process, the total population represented by the input
origins has been transferred into a series of output
layers (E) that sum to the original total. Outputs for
the separate subgroups and layers can be combined in
a variety of ways to answer specific analytical queries
such as the count of all persons at work or count of
children at home at a given time.

The preceding processing sequence is illustrated
briefly in relation to the Southampton case study.

Processing is undertaken for each of the seven sub-
groups, for the study area plus a 25-km buffer area,
reflecting typical local commuting distances, for differ-
ent times of day on 8 March 2006, a Wednesday dur-
ing school and university term time. Raster processing
is based on a 200 m £ 200-m grid, reflecting the spa-
tial resolution of the source data sets. Origin popula-
tions are drawn from census OA centroid locations.
Any immobile populations recorded in census OAs
are first transferred to an output layer. Each of the
destinations (workplaces, education sites, hospitals) is

Figure 4. Modeled outputs for Southampton case study for a weekday during school and university term time at (A) 2:00 a.m., (B) 8:45 a.m.,
(C) 10:45 a.m., and (D) 4:15 p.m.

Developing a Flexible Framework for Spatiotemporal Population Modeling 13
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then considered and their time profiles are compared
to the model target time. Some destinations will have
zero population at some times (e.g., schools in the
early morning and at weekends), whereas others will
have varying but nonzero populations at all times
(e.g., workplaces in some industries, hospitals). Each
destination is associated with a catchment area and
nonresident populations are subtracted from OAs
within the catchment areas and added to the relevant
PNR and PT populations, thus decreasing the remain-
ing PR count at each origin. In this example, workpla-
ces have catchment areas defined as proportions of
workers in successive distance traveled to work bands
from 2001 census data. Population at each destination
is redistributed across its spatial extent; for example,
primary schools being set to 100 m (within a single
cell of the output grid). The population in transit is
distributed across the catchment area in proportion to
the weights in the background layer. The coastal loca-
tion of the city means that the background layer con-
tains many zero-weighted cells representing the sea.
When all destinations have been processed, the
remaining origin populations are redistributed from
OA centroids into the grid, reflecting local residential
population densities. The output layers can be summed
to obtain the distribution of the total population at
target times, as illustrated in Figure 4, which shows
models for a weekday during school and university
term time at each of 2:00 a.m., 8:45 a.m., 10:45 a.m.,
and 4:15 p.m.

The 2:00 a.m. map (Figure 4A) is essentially a resi-
dential population distribution, with the densities in
the map reflecting the geography of residential neigh-
borhoods. The darkest shading indicates central
neighborhoods with the highest density housing. The
8:45 a.m. map (Figure 4B), reflecting the morning
travel peak, shows lower population densities across
residential areas but with increased concentrations on
the road network and central and local business dis-
tricts. The 10:45 a.m. map (Figure 4C) represents a
working day with peak numbers of employees at work
and students in education. The highest concentration
densities are in business districts but also in promi-
nent sites such as schools, colleges, universities, and
hospitals. The final map, 4:15 p.m. (Figure 4D), indi-
cates the temporal asymmetry of a typical weekday,
part way through the less peaked evening travel
period. By this time most schools and colleges have
closed but workplaces remain open and traffic levels
are increased, but not yet to the level of 8:45 a.m.
This simple sequence serves to illustrate just four

possible outputs from the model, which could be
directly interrogated to produce any day of week,
time of day, or more complex sequences, within the
scope of the source data sets.

Discussion

Our objective has been to introduce a framework for
spatiotemporal population modeling and present an
initial implementation. We have demonstrated a sys-
tem capable of estimating population distributions
from available data for any desired target time. We
here consider a range of issues relating to methods
employed, the Southampton case study, data availabil-
ity, and validation.

Our approach is based on the redistribution of small
area aggregate data and we make no attempt to explic-
itly replicate the behavior of individuals, as would be
the case in spatial microsimulation (Birkin and Clarke
2012) or agent-based modeling (Crooks and Wise
2013), or to directly estimate movements between loca-
tions, as in spatial interaction modeling (Nakaya et al.
2007). The proposed framework provides the necessary
elements for spatiotemporal population modeling, many
of which could be achieved using alternative tools and
models, thereby improving on our initial implementa-
tion. For example, the simplified distance-based catch-
ment areas employed here could be replaced with more
sophisticated spatial interaction models to allocate
workers to workplaces or children to schools.

All of the spatial containers in our example have
been georeferenced and modeled as points with a trans-
formation onto a regular grid for background layers and
output. This is not a fundamental requirement of the
approach, but for most of the current UK data sets, the
input points are the best available spatial locations
having associated population characteristics. Smaller
objects such as postcodes and buildings lack definitive
polygon or population data. This georeferencing strat-
egy will have an impact on some distance-based calcu-
lations, such as whether or not a point is included in a
specific catchment area, but not on the population
counts allocated to each container, which are driven
by its capacity and time profile. Our example has used
counts and locations from original sources rather than
undertaking additional spatial transformations of
unknown accuracy. Higher resolution data could read-
ily be incorporated as they become available.

It is possible to directly interrogate the model at
the container level, but the point data do not readily
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lend themselves to cartographic representation, espe-
cially for comparison over time. We have therefore
opted to build on previous work for redistribution of
population from centroid locations onto a regular
grid, reaping specific representational advantages
identified in our earlier review. More broadly, we
have not attempted to implement an entire spatio-
temporal GIS of the type proposed by Pultar et al.
(2010), yet we believe that these two lines of devel-
opment could be fruitfully combined.

The Southampton example does not cover all popu-
lation activity and is intended to demonstrate the fea-
sibility of the approach using selected existing data
sources. Data sources and activity categories are fea-
tures of the application example rather than limita-
tions imposed by the modeling framework. Notably,
the case study excludes leisure and retail customers
who are major contributors to urban population move-
ment (although the balance between categories will
itself vary with time and day). It also does not include
flows to or from neighboring regions. It would be possi-
ble to add further activities or to increase resolution in
any of the spatial, temporal, or attribute domains, as
has been discussed earlier. Each enhancement would
further improve the allocation of population into more
clearly defined locations at a given time, thereby
improving the accuracy of the distributions seen in
Figure 4. It would be possible to repeat these models
for more recent years, but a limitation remains that
reliance on published secondary sources will always
introduce time lags of up to one to two years between
the most recently available data and the present.

A major consideration for any implementation of our
framework is the preparation of the data library. Data
availability remains an important issue, but there is cur-
rently enormous growth taking place in relevant data
sources internationally; for example, through Open
Data initiatives such as data.gov.uk and data.gov (Alani
et al. 2007). This is making possible the assembly of a
coherent population model at a spatial resolution com-
parable to the smallest areas for which census data are
published. These data are increasingly freely available,
often produced from sources such as administrative and
transactional records that describe attendance or activ-
ity in key locations such as schools and hospitals. Avail-
able data are mostly aggregated in the spatial and
temporal domains (or both), although administrative
systems are increasingly able to provide temporal activ-
ity patterns, such as patient arrival times and durations
in hospital accident and emergency departments
(Health and Social Care Information Centre 2013). It

is still necessary to apply distributional assumptions
derived from aggregated sources to individual sites. To
date, there has been much less effort applied to the col-
lation and publication of temporal information in com-
mon formats compared to the spatial aspects.

At present, the validation of our model outputs is
extremely challenging. Fundamentally, this is because
we are attempting to estimate time-specific population
distributions not directly captured by any other mea-
surement systems. We produce detailed estimates of
population subgroups, locations, and times, for most of
which no true values are available. One approach to
validation would be to directly count the population
present at certain times and places. There have been
some interesting recent attempts to do this. Greger
(2015) used observation of three commercial buildings
over a seven-hour period to validate a building-level
spatiotemporal model of central Tokyo. Charles-
Edwards and Bell (2013) used a range of technologies
to implement cordon counts of the population enter-
ing and leaving a large university campus over a
twelve-hour period. In both cases there were difficul-
ties associated with the separation of residential and
nonresidential populations. At the building level, it
was necessary to select only commercial buildings that
could reasonably be assumed to be unoccupied at the
start of the observation period. For the university, it
was necessary to use administrative information to
estimate the number of residents at the start of the
period. Further challenges were presented by the need
to identify and simultaneously observe all possible
entry and exit routes, greatly restricting the choice of
candidate buildings. The university study was made
possible by its being bounded on three sides by a river,
with only a small number of access points. Greger’s
(2015) approach provided a detailed validation exer-
cise but focused on only one type of population activ-
ity over a very limited range of time and space. Many
of the differences observed between the model and
validation are attributable to these limitations.
Charles-Edwards and Bell (2013) developed a hybrid
approach but not an independent validation of mod-
eled data. Both studies acknowledge the substantial
cost and resource requirements to cover very restricted
time periods. In the context of this study it would not
be possible to scale up these observational approaches
to assess the entire population present even to a single
neighborhood, given our concern with variation over
multiple timescales in complex multiuse areas with
residential, nonresidential, and in-transit populations
and multiple access points.

Developing a Flexible Framework for Spatiotemporal Population Modeling 15
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A second approach to validation would be to use
alternative data sources, but we have here proposed a
framework, the objective of which is to integrate all of
the available sources to produce the best possible esti-
mate of the entire population distribution. Adminis-
trative data sources tend to be activity-specific; hence,
hospital activity data on patient numbers are a defini-
tive source, which we would want to use in the model-
ing. Patient numbers in the model cannot be validated
by removing the hospital data and seeking to reesti-
mate the missing values from sources relating to work-
places or schools. Nevertheless, it should be noted
that the approach presented here is akin to an exact
interpolation method (Lam 1983) in which known
input counts will be directly replicated in the output
model. Thus, whenever an additional data source
records the population engaged in an activity at a par-
ticular point in time and space, those values will be
replicated in the output, improving the overall accu-
racy of the model.

A third approach to the validation challenge would
be to employ data that continuously track populations
and monitor activity, such as mobile telephony, shop-
ping center footfall counts, traffic sensors, or georefer-
enced social media posts. At present, research access to
these big data types is limited, but they have the poten-
tial to provide proxies for population redistribution over
space and time, independent of traditional administra-
tive data sources. These data present additional ethical
constraints and calibration challenges (e.g., the ratios
between population and phone calls or vehicle move-
ments are not fixed and sociodemographic characteris-
tics are not directly measured). It is clear that no one
source can be used for the validation of all the others.
Rather, it will be necessary to triangulate multiple sour-
ces to produce indicators of uncertainty. The science of
interpreting and calibrating big data is at a relatively
early stage and would most likely still require integra-
tion with baseline data of known quality such as resi-
dential counts and school registration numbers. Despite
these difficulties, we consider the cross-validation and
integration of these very different sources to be a key
research challenge and potentially the only sufficient
means of validating the outputs of comprehensive spa-
tiotemporal population models.

Conclusion

In this article we have proposed a novel conceptual
framework for spatiotemporal population modeling,

demonstrated a specific implementation, and illustrated
its application with a case study. Our approach involves
a spatiotemporal data system, with a continuous repre-
sentation of time, supporting a separate analysis system.
It meets a widely expressed need for population models
that are temporally as well as spatially detailed and that
have the potential to support a wide range of new ana-
lytical uses. This work addresses the central problem
that static nighttime residential population distributions
continue to be used for the majority of analyses when
reality is enormously complex and continuously varying
over multiple timescales. Incorporating greater temporal
specificity has already been established as having the
potential to deliver massively more accurate assessments
of population exposure to hazard, demand for services,
and emergency preparedness (Bhaduri et al. 2007;
Aubrecht et al. 2013).

The approach described here provides an important
step forward, but we have identified four key areas in
which further research is needed. Implementation of the
framework could be enhanced by the incorporation of
alternativemethods, such as the use of more sophisticated
spatial interactionmodels to define catchments and flows.
More generally, our approach lends itself to integration
with other contemporary developments in spatiotempo-
ral GIS. We have demonstrated an application using
readily available data but have identified potential data
enhancements in each of the spatial, temporal, and attri-
bute domains. One particularly attractive development
would be the integration of near-real-time data derived
from a variety of continuously sensed data sources to
augment the predominantly administrative systems
employed here. There is also a need for the development
of new validation approaches able to handle the inherent
uncertainties associated with all of the potential compar-
ator data sources.

Finally, consideration of spatiotemporal population
modeling brings to the fore the importance of what we
have called the modifiable spatiotemporal unit prob-
lem. This is relevant to every application of population
mapping although the literature has, somewhat illogi-
cally, focused almost exclusively on the modifiable
areal unit problem. When using spatial population
data, analytical results will be heavily dependent not
only on the spatial units but also the reference time to
which the data relate. It is clear that a nighttime resi-
dential population map will be highly misleading if
used to assess the population exposed to a daytime
emergency, regardless of the choice of spatial units.
Our approach is already able to reconstruct the very
different population distribution at, for example,
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8:45 a.m. compared to 10:45 a.m. As researchers begin
to use new and richer data sources, particularly those
captured by continuous tracking rather than formal
enumeration, consideration of the modifiable spatio-
temporal unit problem will necessarily become much
more important. Working rigorously in this exciting
but challenging new environment will require appro-
priate methods for handling spatiotemporal data such
as the modeling framework presented here.
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