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Abstract
Artificial grammar learning (AGL) has become an important tool used to understand
aspects of human language learning and whether the abilities underlying learning may
be unique to humans or found in other species. Successful learning is typically assumed
when human or animal participants are able to distinguish stimuli generated by the
grammar from those that are not at a level better than chance. However, the question
remains as to what subjects actually learn in these experiments. Previous studies of
AGL have frequently introduced multiple potential contributors to performance in the
training and testing stimuli, but meta-analysis techniques now enable us to consider
these multiple information sources for their contribution to learning — enabling intended
and unintended structures to be assessed simultaneously. We present a blueprint for
meta-analysis approaches to appraise the effect of learning in human and other animal
studies for a series of artificial grammar learning experiments, focusing on studies that
examine auditory and visual modalities. We identify a series of variables that differ
across these studies, focusing on both structural and surface properties of the grammar,
and characteristics of training and test regimes, and provide a first step in assessing the
relative contribution of these design features of artificial grammars as well as species

specific effects for learning.
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Introduction

Artificial grammar learning (AGL) studies present learners with sequences of
stimuli that inhere particular structural properties (Miller, 1958) of differing complexity
(e.g., Reber, 1967), and then test learners on their ability to respond to sequences that
incorporate aspects of this structure. Such an approach has been a very powerful method
enabling investigations within a species into the possibilities and constraints on
structural learning, such as distinctions between phrase-structure grammars or finite
state grammars (e.g., Bahlmann, Schubotz, & Friederici, 2008), or the extent to which
adjacent or non-adjacent dependencies in sequences are available to the learner (e.g.,
Conway et al., 2010; Gomez & Gerken, 1999; Jamieson & Mewhort, 2005; Lai &
Poletiek, 2011; Vuong, Meier & Christiansen, 2016). The paradigm is also of great
potential use across species, and has been extensively used to address questions about
what structures are learnable by which species, and under what conditions (e.g., Abe &
Watanabe, 2011; Chen et al., 2015; Fitch & Hauser, 2004; Saffran et al., 2008).

There has already been substantial progress made in addressing these questions,
resulting in an intensive array of studies of learning in birds (e.g., Abe & Watanabe,
2011; Chen & ten Cate, 2015; Gentner et al., 2006; Spierings et al., 2015, 2017), non-
human primates (e.g., Endress et al., 2010; Heimbauer et al., 2018; Wilson, Smith, &
Petkov, 2015), as well as human children and adults (e.g., Frost & Monaghan, 2017,
Gomez & Gerken, 1999; Saffran et al., 2008), addressing acquisition of multiple
grammatical structures across these species. The other papers in this special issue
provides a host of further examples of the paradigm in use.

However, testing different structures and different species raises substantial
methodological problems when it comes to direct comparisons between grammars and

between species. Potential confounds both within and across studies have caused
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substantial concern in the past in terms of the validity of conclusions being drawn from
studies (e.g., Beckers et al., 2012, 2017; de Vries et al., 2008; Perruchet & Pacteau,
1990; Perruchet et al., 2004), such as determining exactly what aspect of the structure
is being responded to — whether that be the actual structures themselves, or some other
feature of the stimuli (see, e.g., Knowlton & Squires, 1996). However, by using current
meta-analysis techniques, the presence of these potential confounds can actually
provide valuable opportunities for teasing apart some of the multiple factors that may
contribute to learning. Thus, the pattern of such confounds across studies provides a
backdrop against which the contribution of specific experimental design decisions can
be assessed in terms of their effect on participant learning. Critically, meta-analysis
permits researchers to quantify the effects of different kinds of stimuli within a species,
but also differences across species in how they may respond to different grammatical
structures. In the present study, we present an analysis of a subset of AGL studies,
providing a framework that more comprehensive analyses can follow.

In cross-species comparisons, a key topic of interest is to determine which
grammatical structures are potentially learnable by distinct species (Fitch & Friederici,
2018; Ghirlanda et al., 2017). The prospect of such discoveries has broad repercussions
for the evolution of communicative systems, and the human specificity of language
structure. The stakes are thus high. As one influential example, Fitch and Hauser (2004)
conducted a study that required human adults and cotton-top tamarins to distinguish
between strings generated by a phrase-structure and a finite-state grammar. Only the
humans were able to make this distinction when trained on strings from the phrase-
structure grammar. Subsequent research, however, has revealed several confounds in

this study, suggesting that the humans may have relied on other sources of information
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to make their responses instead of the intended structural information (e.g. de Vries et
al., 2008; Perrruchet & Rey, 2005).

An ideal, perfectly-controlled methodological study would isolate a particular
grammatical structure and test learning of that particular structure without influence
from other properties of the stimulus. However, the complexity of language structure
and the practical challenges of training and testing different species on language-like
structures introduces variation into the actual tasks being conducted. Ensuring that only
one particular aspect of language structure is tested, and tested in the same way across
studies involving different species, remains a substantial, potentially insoluble,
challenge.

In a recent small-scale review of cross-species studies of artificial grammar
learning, Beckers et al. (2017) identified several characteristics that could have biased
learning toward accepting the grammatical structure being tested without necessarily
indicating learning of the structure. These included the extent to which the test sequence
had previously occurred in the same form during exposure to the training sequences
(either wholly or in part), whether the test sequence shared the same onset as the training
sequences, and whether the test and training sequences were cross-correlated even if
they did not contain exactly the same sequences or subsequences. Thus, in a study
containing one or more of these specific properties, it would be impossible to
conclusively demonstrate that the grammatical rule was acquired by the learner. Such
questions have been raised for almost as long as artificial grammar learning studies
have been conducted — the extent to which learning is of particular grammatical
structures or instead responding to lower-level fragments in the sequences (cf.
Knowlton & Squire, 1996; Perruchet & Pacteau, 1990—see Frost, Armstrong,

Siegelman & Christiansen, 2015, for a review).
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Artificial grammars also differ on fundamental structural properties. Some AGL
studies contain dependencies between adjacent stimuli, whereas others contain
dependencies between non-adjacent elements in the stimuli. Furthermore, artificial
grammars may differ in terms of the number of distinct stimulus elements that
sequences contain, and the number of different categories to which these stimulus
elements belong. An artificial grammar with a larger versus a smaller vocabulary, or a
larger versus smaller set of grammatical categories, may affect learning distinctly.
Learning studies can also vary in terms of the modality of the stimuli — whether they
are auditory or visual (Heimbauer et al., 2018). For example, whilst cotton-top tamarins
are often trained on auditory (e.g. human non-words, monkey calls; Neiworth et al.,
2017) and visual materials (e.g. structured visuospatial sequences; Locurto, Fox, &
Mazzella, 2015), zebra finches only receive auditory materials consisting of
manipulations of species-specific birdsong (e.g. Chen and ten Cate, 2015; van
Heijningen et al., 2009). Modality is known to have distinctive effects on learning
sequence structure (for reviews, see Frost et al., 2015; Milne, Wilson & Christiansen,
2018), and for these reasons modality is taken as a focus of the literature that we will
analyse.

Artificial grammar learning studies also differ in terms of how training and
testing is conducted. Studies of complex sequences with non-human primates and birds
may require substantial training time — several thousand trials over several weeks —
whereas studies with human adults are typically constrained to short training sessions
with a constrained set of training trials. Testing also varies in terms of how the effects
of learning are measured. For instance, in testing human adults and children there is
frequently a distinction between explicit, reflection-based tasks for adult responses,

such as alternative forced choice, or go/no-go responses, and implicit, processing-based
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tasks such as head-turn preferences or looking times. These tasks may tap into different
mechanisms, with processing-based tasks more effective for assessing processing-
based learning, such as acquisition of grammatical structures (Christiansen, in press;
Frizelle, O’Neill, & Bishop, 2017; Isbilen et al., 2018).

As we have summarised, studies of artificial grammar learning may vary along
several of these dimensions simultaneously. In this paper, we present a blueprint for
how a meta-analysis approach could proceed to quantify how various design features
of AGL studies might influence performance. We analyse a subset of AGL studies that
have focused on presenting stimuli in either auditory or visual modalities, as reflected
in the key words used within these articles. As we focus only on a subset of AGL
studies, the conclusions drawn within the analysis may not generalise to the wider
literature. The primary aim of our study is thus to provide a meta-analytic framework
that a more comprehensive study may adopt. We show how meta-analytical methods
enable us to measure the relative contributions of multiple potential confounds —
reconsidered here as moderators — in influencing the size of the observed effects. This
means that what was once considered a confound can actually be reinterpreted as
providing a valuable and interesting source of data towards determining the limits and

constraints on learning within and across species.

Method
Literature Search
We conducted the literature search and meta-analysis in accordance with the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines (Moher, Liberati, Tetzlaff, & Altman, 2009), pre-registering the encoding

and analysis to be conducted (https://aspredicted.org/wf2uk.pdf). The literature search
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was conducted on the SCOPUS database (Scopus, 2019) on articles published up to
March 2019. In order to focus our literature review, we searched for studies that
considered explicitly the modality of presentation in artificial grammar learning. We
therefore conducted two searches of keywords appearing in titles, keywords, and
abstracts of articles. In the first, we searched the keywords “artificial grammar learning”
and “vision” OR “visual”. In the second, we used the keywords “artificial grammar
learning” and “auditory” or “audio” or “audiovisual”. The results were then merged
into a master list, and submitted to study selection criteria.

The search we performed avoided bias in selecting publications for analysis, in
accordance with PRISMA guidelines, but it is important to note that the results of the
search were not comprehensive in including all papers that conducted AGL studies with
auditory or visual stimuli. The literature search for instance failed to include several
influential artificial grammar learning studies (e.g., Gentner et al., 2006; Hauser &
Fitch, 2004; Reber, 1967; Saffran et al., 2001, 2008). Our approach therefore outlines
a blueprint for conducting meta-analyses of potential design differences in AGL
research, rather than to provide a final, comprehensive answer as to the size of effects

of learning in AGL studies.

Study selection

The literature search resulted in 91 records. Of these, 11 were duplicates. Of the
80 articles remaining, 8 were review articles, 3 presented computational modelling and
no behavioural data, 1 study reported neuroimaging data of primates with no
behavioural data, and 2 reported a case study on an aphasic population with no control
group. These articles were removed, and the remaining 66 articles contained 78 studies

involving 3559 subjects (this includes subjects tested more than once in the same article
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— see Results section for how the analysis took into account multiple studies within
articles). Figure 1 shows the PRISMA literature search flowchart. The list of studies

included are reported in the Supplementary Materials.
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Figure 1. Flowchart of the PRISMA literature search criteria used in the current meta-

analysis.

Data extraction and effect size calculation

The effect size for each study was initially computed as Cohen’s d, and
subsequently corrected to Hedge’s g, with the variance of g computed in accordance
with Borenstein et al. (2009). Formula (1) provides correction factor J, which is
multiplied with Cohen’s d to provide Hedge’s g (2). The variance of Hedge’s g, V,,, was

provided by (3), where the variance of Cohen’s d is computed, and corrected by J.

=1 —Wg_l)

2)g=Jxd



Running head: ANALYSING MULTIPLE CONTRIBUTORS TO AGL

(3)vg=(1+ d )XJ2

n 2Xn

Cohen’s d was derived for each type of dependent variable, the dependent
variable for each study is shown in the Supplementary Materials. For studies reporting
the number correct, numbers endorsed or responded to, or go/no-go responses as
dependent variable, the effect size was computed from the difference to chance

responding in a one sample test (see Equation 4):

Mean — Chance
(4)d=

SDwithin

In cases where tests and language structures were similar over different test
sessions or conditions (e.g. Cope et al., 2017; Goranskaya et al., 2016; Mueller et al.,
2010), we combined the means and SDs from each of the multiple test sessions, and
computed the one sample difference from chance. The pooled mean was simply
computed as the arithmetic mean across the sessions, weighted by number of
participants in the session. For pooled SD, we took the average SD using equation (5),
where n, is the number of items in test session 1, n, is the number of items in test session
2, etc., and SD, is the observed standard deviation of the test session 1 response

accuracy, etc. (see van Witteloostuijn, Boersma, Wijnen, & Rispens, 2017):

n1+ n2+ Tl3+ Tl4—4

(5) SDAverage = j

10
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Subsequently, we computed d using equation (4), with the pooled mean, 50%

as chance, divided by the SD In serial reaction time studies, the effect was

Average *

measured as the standardised mean difference in RT between presentations of a trained

vs. an untrained structure, with SD computed as in (5), which assumes

Average
conservatively that there is a correlation of 1 between the trained and untrained structure
responses across participants (a lower correlation would result in a lower SD, so this
formula provides a conservative upper limit for the effect size). For instance, for
Kemeny and Nemeth’s (2017) data represented in Figure 3, presenting the mean
response time (RT) and SEM per testing block. In this case, we pooled the mean RT
for the grammatical blocks 4 and 6 weighted by the number of participants in the
session, and computed d as the difference to the mean RT for the ungrammatical block

5, with SD computed as the SD across blocks 4, 5, and 6, using (5).

Average

For sequence reproduction tasks, the effect size was computed as difference in
mean accuracy for grammatical sequences and ungrammatical sequences, with SD as
the SD ,,uqe COmputed using (5).

In head-turn preference paradigms (e.g. Gomez & Gerken, 1999), effect size
was the proportion of trials where the participant turned towards the grammatical
violation sequences over the grammatical sequences, indicating observation of the
violation. These values were compared to chance and d computed in the same way as
for response accuracy measures.

For looking time paradigms (e.g. Milne et al., 2018), the effect size was
computed as the difference in fixation duration between grammatical and
ungrammatical sequences, computed using the same approach as that for sequence

reproduction paradigms. Positive effects were generally computed as longer looking to

ungrammatical than grammatical sequences (a novelty effect). However, in cases where

11
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the interpretation of the authors suggested that longer looking times to grammatical
stimuli (or preferences in head-turn to grammatical sequences) reflected greater
learning (i.e., a familiarity effect), we re-signed these effects.

In studies where means and variance were reported only in figures, we contacted
authors for data, and utilized the Digitizeit digitizer software (available from:

http://www.digitizeit.de/) when such data was not available, to extract the means and

SDs. In cases where graphs displayed the mean and 95% confidence intervals (Hall et
al., 2018), confidence intervals were converted into SDs according to (6), which
assumes that the authors had computed the confidence intervals using the t-distribution
(which is more conservative than assuming confidence intervals based on the Z-
distribution), where tcrit is the critical value of the #-distribution for n-1 degrees of

freedom at p = .05:

upperlimit — lowerlimit
2 X terit[n — 1]

(6) SD = Vnx

Each study was encoded for several features in order to test their influence on
learning performance. We encoded the animal class and species that was tested, and in
the case of human studies, distinguished whether the study was on children (<18 years)
or adults.

For properties of the AGL structure, we encoded whether the study contained
at least some repetitions of the stimuli experienced during training in the testing,
whether the artificial grammar contained adjacent dependencies or did not contain
adjacent dependencies, and whether the artificial grammar contained non-adjacent

dependencies or did not contain non-adjacent dependencies.

12
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For characteristics of training and testing, we encoded the type of test response
that was being collected — whether this was a Yes versus No judgment, a go or no-go
task, a scale judgment, a forced choice test between two or more alternatives, serial
reaction time, head-turn preference, looking time, sequence production, or frequency
estimation task. We subsequently grouped these variables into whether they required
reflection on the grammatical structure (reflection-based; forced choice tests, yes versus
no judgement, go/no-go, scale judgement), or more directly tapped into the underlying
processing of the grammatical structure (processing-based; looking time, head-turn
preference, serial reaction time, sequence production) (Christiansen, in press). We
encoded the amount of exposure to the artificial grammar that participants experienced
in terms of the total number of stimulus tokens from the grammar during exposure
(training length).

Importantly, we also encoded a number of surface features of the AGL,
including whether the stimuli were visual, auditory, or a combination of both visual and
auditory, in order to determine whether learning varied according to the modality of the
task. Further, we also encoded the size of the artificial grammar in terms of the size of
the vocabulary in the grammar (or the number of distinct items), as well as the number
of different categories in the grammar (e.g., for a phrase-structure grammar with four
nouns, two verbs, two adjectives, and two determiners, the number of categories is 4

(noun/verb/adjective/determiner) and the size of the vocabulary is 14.

Results
Evidence of acquisition of structure from AGL studies
The overall effect size across the studies, and the extent to which each of the

encoded study variables predicted differences in effect sizes across the studies, was

13
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determined by conducting a random effects meta-analysis of effect sizes, using the R
package metafor (Viechtbauer, 2010). This approach takes into account inconsistencies
between the studies analysed, provides an estimate of sampling error, and also permits
a measurement of the effects of each of the variables in moderating the size of the
overall behavioural effect (Borenstein, Hedges, Higgins, & Rothstein, 2010;
Borenstein, Higgins, & Rothstein, 2009). We encoded each experiment in an article and
each test in an experiment as a separate study, and as these cannot be assumed to result
in effect sizes independent from one another, we encoded article as a nested multilevel
variable in the analysis (Konstantopoulos, 2011).

The model was run using the rma.mv function with the restricted maximum
likelihood (REML) method. We utilised the # method to generate test statistics and
confidence intervals. The model was run using the rma.mv function with restricted
likelihood (REML) method, and the t-adjustment to calculate the model estimates of
standard errors, p values and confidence intervals. Effect sizes for individual studies
and the overall average weighted effect sizes are presented in Figure 2. A positive effect
size indicates greater preference for stimuli conforming to the AGL structure, while a
negative effect size indicates preference for non-conforming stimuli (except in the case
of the looking studies, where a positive effect indicates longer looking to violating
stimuli — as this was the predicted effect of such studies in reflecting AGL acquisition,
e.g., Gomez & Gerken, 1999).

The meta-analysis resulted in the average weighted effect size = 1.069, SE =
130, 95% CI[.813, 1.326], p <.0001, indicating that overall there was strong evidence

of learning in AGL studies.

3.2 Publication bias

14
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To determine whether there was publication bias in the sample, we conducted a
Peters’ test (Peters et al., 2006) on the random multilevel meta-regression model. The
Peters’ test revealed a significant asymmetrical distribution, #154) = -2.290, p = .023,
indicating the presence of publication bias in our sample. The funnel plot (Figure 2)
displays the standard error (a measure of study precision) against the effect sizes of the
individual studies. In the absence of publication bias, studies should be symmetrically
distributed around the average weighted effect size in a funnel shape, with high
precision studies being closer to the average weighted effect size, and lower precision
studies symmetrically distributed around the average weighted effect size. The
distribution indicates that there are more large positive effect sizes for smaller sample
sizes than would be expected from a standard distribution of studies, suggesting a
potential publication bias. The size of the effect of AGL acquisition, and the sources of
heterogeneity of the effects, should thus be considered in light of possible bias in the

studies published.

15



Running head: ANALYSING MULTIPLE CONTRIBUTORS TO AGL
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Figure 2. Funnel plot showing the relationship between the standard error and the effect
size of the individual studies. Points are colour-coded according to animal class. Black
points illustrate Human Adult Studies, blue illustrate Non-human mammals studies, red

are Human Child studies, and green are Bird studies.

3.3 Heterogeneity in effect size variance associated with study variables

Cohran’s Q-test for heterogeneity was significant (Q(155) = 1185.657, p <
.0001), indicating that variance in the data cannot be explained by random measurement
error, but that different aspects of studies are contributing to the effect size. We thus
analysed the effects of each of the set of variables we encoded from each of the studies
as moderators, shown in Table 1.

For the effect of animal class (but also distinguishing human adults and human

children from non-human mammals), there were significant differences on the size of
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effect of learning between different species. For human adults, the overall effect size
was 1.252 (SE = .148, 95% CI [0.958, 1.545], p < .0001). For human children, the
overall effect size was 0.615 (SE = .231, 95% CI [.101, 1.129], p = .0237). For non-
human mammals, the overall effect size was 0.626 (SE = .172, 95% CI [.221, .1.032],
p = .008). For birds, the overall effect size was 0.428 (SE = 0.533) (95% CI [-0.653,
1.509], p = .427).

Properties of training and testing of AGL studies were found to produce
significant differences in effect sizes. Log-transformed number of training trials related
negatively to effect size, -0.188 (0.054) (95% CI [-0.295, -0.0815], p = .0006). Further,
repetition of trained items at test resulted in larger effects 1.051 (SE = 0.279, 95% CI
[0.499, 1.602], p = .0002).

Surface level features of the language did not significantly moderate the
variance of effect sizes (see Table 1), and this included also the modality of stimulus
delivery. The number of categories, the vocabulary size, and critically, whether the
stimuli were visual or auditory were not found to affect the overall effect size.

For the structural properties of the language, there were moderating effects.
The presence of repetition of items from training to test positively influenced effect
sizes, with an overall effect of 1.051 (SE =0.279) (95% CI [0.499, 1.602], p = .0002).

As there were different sized effects of learning for each animal class, and
possible confounds between study design characteristics and animal class tested, we
conducted further analyses of moderator variables for human adult, human child, birds,

and non-human mammals separately.

Table 1. Contributions of each moderating variable to account for variance in effect

sizes across studies.

17
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Moderator F Df1, Df2 p
Population
Animal Species 2.613 (10, 145) <.0001***
Animal Class 5.811 (3, 152) .0009***
Human vs. Non-human 7.555 (2, 153) .0007***
Training and testing
Log Training Length 12.149 (1, 154) <.0001***
Stimulus Modality 0.095 (2, 153) .909
Test Response 1.624 (10, 145) .105
Test Type 3.698 (1, 154) .056
Surface level properties
Categories in Language 0.0001 (1, 154) 992
Number of unique vocabulary 3.021 (1, 154) .084
items
Structural Properties
Repetition of items 14.162 (1, 154) .0002%*
Adjacent dependencies 0.238 (1, 154) .627
Non-adjacent dependencies 0.118 (1, 154) .608

Note. F'is the statistic for testing whether the moderator accounts for some heterogeneity
between studies; p is the significance for the F-test *** p <.001, ** p <.01, *p <.05. Note
that Animal Class distinguishes birds, non-human mammals, human adult, and human child.
Animal species also distinguishes human adult and human child.

3.4 Moderator Analysis of Human Adults

There was significant heterogeneity of variance in the effect size in studies

testing human adults (Q(99) = 707.273, p < .001), so we analysed the effect of each

moderator (see Table 2 for the significance of each moderator). There was a significant

effect of the presence of non-adjacent dependencies (effect = 0.582, SE = 0.259, 95%

18
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CI [0.068, 1.096], p = .027), suggesting that adult human participants are overall

successful in learning non-adjacencies in artificial grammars.

Table 2. Contributions of each moderating variable to account for variance in effect

sizes in Human Adult studies.

Moderator F Df1, Df2 p

Training and testing

Log Training Length 0.415 (1, 98) 521

Stimulus Modality 0.306 (2,97) 137

Test Response 0.671 (8,91) 716

Test Type 1.884 (1,98) 173
Surface level properties

Categories in Language 0.319 (1, 98) 574

Number of unique 1.023 (1, 98) 305

vocabulary items

Structural properties

Repetition of items 0.036 (1, 98) 851
Adjacent dependencies 1.745 (1, 98) .190
Non-adjacent dependencies 5.050 (1, 98) .027%*

3.5 Moderator Analysis of Human Children

There was significant heterogeneity (Q(10) =49.953, p <.0001), so we further
analysed the effect of each moderator (see Table 3). In this analysis, the only significant
moderator was the test response participants made. This analysis indicated that head-
turn preference paradigms produced an overall effect of 1.301 (SE = 0.1663, 95% CI
[0.772, 1.831], p = .004). Sequence production paradigms, by comparison, produced an

effect that failed to statistically differ from 0 (effect size = 0.150, SE = 0.144, 95% CI
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[-0.433, 0.721], p = .395). Finally, binary yes-no judgement tasks produced an overall

effect of 0.822 (SE = 0.099. 95% CI [0.506, 1.137], p = .004).

Table 3. Contributions of each moderating variable to account for variance in effect

sizes in human child studies.

Moderator F Df1, Df2 p

Training and Testing

Log Training Length 0.214 (1,9) .654
Stimulus Modality 3.427 (1,9) .097
Test Response 15.978 2,8) .002%*
Test Type 0.271 (1,9) 615
Surface level properties
Categories in Language 0.059 (1,9 813
Number of unique vocabulary 0.862 (1,9 377
items
Structural properties
Repetition of items 2.503 (1,9) 148
Adjacent dependencies 0.023 (1,9 .884
Non-adjacent dependencies 0.012 (1,9 917

3.6 Moderator Analysis of Non-human Mammals

There was significant heterogeneity (Q(7) = 15.928, p < .026), therefore we
analysed the effect of each moderator (see Table 4). Non-human mammals only took
part in studies delivered in the auditory modality, and all of which were processing
based, included adjacent dependencies, and did not include repetitions at test, and hence

we did not include a moderator analysis of testing modality, repetition of items,
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adjacency, and testing type. No moderator accounted for a significant proportion of

variance in this dataset.

Table 4. Contributions of each moderating variable to account for variance in effect

sizes in non-human mammals studies.

Moderator F Df1, Df2 p

Training and testing

Log Training Length 1.121 (1, 6) 331

Test Response 1.262 (1, 6) 304
Surface level properties

Categories in Language 0.760 (1, 6) 418

Number of unique vocabulary items  0.365 (1,6) 567
Structural properties

Non-adjacent dependencies 0.111 (1, 6) 750

3.7 Moderator Analysis of Birds Studies

There was again significant heterogeneity (Q(36) = 259.498, p < .0001),
therefore we analysed the effect of each moderator (see Table 5). Birds, however only
took part in classification-based tasks, and thus, we did not analyse the effect of test
type. Log training length accounted for a significant portion of the variance, increased
training resulted in a lower effect size -0.739 (SE = .268, 95% CI [-1.283, -0.195], p =
.009). Increased vocabulary sizes tended to increase effect sizes (effect size = 0.099,
SE =0.038, 95% CI[0.022, 0.177], p = .014). Stimulus modality explained a significant
portion of variance, with visual stimuli producing larger effects (effect size = 1.993, SE
=10.788, 95% CI [0.395, 3.592], p = .016) than auditory stimuli. The response task used

also accounted for a significant portion of variance of effect sizes, however, the meta-
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analytic estimate for both 2AFC tasks (effect size = 2.288, SE = .135, 95% CI [-0.488,
5.065], p=.090) and go/no-go tasks (effect size = -0.042, SE = 0.294, 95% CI [-0.642,
0.559], p = .889) failed to significantly differ from 0. This reflects the fact that variance
of effect sizes in birds was large; to properly account for the moderating effect of task
type on the variance in effect size for bird studies, a larger set of studies for inclusion
would be helpful. Finally, the repetition of items accounted for a significant portion of
the variance of effect sizes, whereby repeating items at test resulting in an effect size of
5.013 (SE = 0.740, 95% CI [3.511, 6.515], p <.0001). This effect is explained by the
only study including repetitions of whole strings at test (Spierings & ten Cate, 2016)

produced large effect sizes.

Table 5. Contributions of each moderating variable to account for variance in effect

sizes in birds studies.

Moderator F Df1, Df2 p

Training and testing

Log Training Length 7.609 (1, 35) .009%*
Stimulus Modality 6.407 (1, 35) .016*
Test Response 6.407 (1, 35) .0l16*
Surface level properties
Categories in Language 0.053 (1, 35) 819
Number of unique vocabulary 6.712 (1, 35) .014%*
items
Structural properties
Repetition of items 45.926 (1, 35) <.0001***
Adjacent dependencies 2.462 (1, 35) 126
Non-adjacent dependencies 1.661 (1, 35) 206
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Discussion

We presented a focused literature search analysing AGL studies that address the
modality of stimulus presentation, taking into account the varieties of designs, as well
as species, that are tested across these studies. This approach provides a blueprint for
how meta-analysis in AGL studies can assess the influence of multiple moderators on
learning, providing insight into the conditions under which learning of regularities in
artificial grammars can be observed. Confounds and differences between studies — both
intended and unintended (and previously viewed as adding opacity to the field of
research) — can be considered sources of information for disentangling multiple
contributors to learning of artificial grammar stimuli, rather than serve only as an
impediment to comparison between studies. Heterogeneity of design can actually be
analysed through an estimate of heterogeneity of variance which can then be associated
with the presence or absence of differences across studies.

The current analysis was conducted to provide a framework for how future,
more comprehensive meta-analyses might robustly identify patterns in the artificial
grammar learning literature. However, our literature search was constrained by a
restricted set of keywords that selected only papers where AGL and modality of
presentation were explicitly tagged as features of the study. We know that influential
studies in the literature were omitted by our approach. Whereas our focus here was to
avoid bias in selecting the papers for inclusion in our analysis by conducting an
objective keyword search, this absence of key studies highlights that there are relevant
papers that are not included in the current analysis, and so the comprehensiveness of
our search cannot be assumed. Consequently, the precise results of the meta-analysis
and the moderator analysis should not be taken as the final word on this topic. Instead,

we have shown how a future analysis, on an even more comprehensive set of studies,

23



Running head: ANALYSING MULTIPLE CONTRIBUTORS TO AGL

may help move the field forward. Such a study will be a considerable undertaking; a
Scopus search with the keywords “artificial grammar learning” or “statistical learning”,
for instance, resulted in 6,511 records and still failed to include the landmark studies
by Fitch and Hauser (2004), Gentner et al. (2006), and Reber (1967), mentioned in the
Introduction, though the search did succeed in including the key studies by Saffran
(2001) and Saffran et al. (2008). Finding principled ways to limit the literature search,
without omitting key articles, presents an additional interesting challenge in this field
of research.

This shortcoming raises concerns about terminological specificity in the field of
artificial grammar learning. If we take Fitch and Hauser’s (2004) study, this paper
explicitly implements an AGL method, however, it instead describes it as a
“familiarization/discrimination paradigm” in its abstract. Gentner and colleagues
(2006) do not describe their method in the abstract, and in text specify it as a go/no-go
operant conditioning procedure of AB" and A"B" grammars. Similarly, Saffran’s (2001)
and Saffran et al.’s (2008) methods are variously described as statistical learning,
grammatical pattern learning, or familiarization-discrimination.

Cumming (2014) provided a compelling argument for favouring magnitude
estimation over null hypothesis significance testing in assessing experimental effects.
A tenet of this approach is to employ meta-analytic thinking throughout the research
process, including writing, reporting, and publication. The diversity of terms utilised to
describe related methods makes it difficult to devise a singular, constrained set of search
terms that would gather them together in a given search. Moving forward, we would
suggest that using informative, umbrella keywords will ameliorate this issue,

facilitating meta-analyses, and in Cumming’s (2014) view, support research integrity.
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In terms of the results of our focused meta-analysis in terms of what can be
learned across animal classes, the analyses showed that the size of learning effects
varies according to the species tested, though the evidence of publication bias and the
potential lack of comprehensiveness in the search mean that interpretations based on
size of effects must be treated with caution. The overall largest effect was observed for
studies involving adult humans, but there were also overall significant effects of
learning associated with child humans, non-human mammals, though not for birds.
However, there are many differences between studies designed to appraise learning in
different species, and heterogeneity of the variance within studies addressing each
species points to ways in which these design differences may have profound effects on
learning. The analyses of moderator effects within each animal class demonstrated that
multiple variables were affecting learning, highlighting potential distinctions across
species.

The size of the observed effects for human children was affected by the test
response required, with similar effect sizes for head-turn preference and Yes/No
judgement tasks. Whilst sequence production tasks did not significantly differ from 0,
this likely reflects the small number of child studies included in the present analysis.
For birds, the presence of training items at test produced large effects, perhaps
unsurprising given the large amount of training they receive. Intriguingly, a greater
number of training trials related negatively to effect size. This is likely correlated with
the specific species of bird tested, and thus represents an important variable to focus on
in a comprehensive meta-analysis. For adult humans, larger effects were produced by
grammars containing non-adjacent dependencies than sequences without those
dependencies, which have traditionally been difficult to observe in individual studies

(e.g., Frost & Monaghan, 2016; Lai & Poletiek, 2011; Perruchet et al., 2004), see
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Wilson et al. (in press) in this issue for further discussion. The absence of a significant
effect of adjacent dependencies was unexpected, but highlights the variation that can
occur in the effect sizes across studies testing these structures.

Further meta-analytical techniques can help determine the additional sources of
information that might support such learning, such as use of reflection- versus
processing-based test measures (Vuong et al., 2016). In order to measure the effect of
learning on processing, rather than explicit decision-making based on the structures
experienced by the learner, a task that probes processing is proposed to be more
effective (Christiansen, in press; Frizelle et al., 2017; Isbilen et al., 2018), however, in
the present analysis there was no statistically reliable difference between the two. This
may be a consequence of the comparatively large number of reflection-based effects
(135) relative to processing-based effects (21) included in this analysis, or of the range
of grammars that tend to be tested in AGL studies, a large number of studies use Reber-
style (1967) grammars, where explicit testing may produce a similar magnitude of
effects. Moreover, the effect of reflection-based measures may also have been inflated
by including the non-human animal data as they are unlikely to engage in the kind of
conscious reflections often observed in human studies. Finally, the presence of a
potential publication bias combined with the much longer use of reflection-based
assessments in AGL studies going more than half a century may further explain this
pattern.

A key issue that emerged during our analysis was that individual stimuli within
a test may contain alternative structures or vary in the presence of surface features. The
analyses in this paper report effect sizes and features of the stimuli across sets of stimuli,

which can obscure the individual influence of these features. Making raw data sets
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publicly available would enable this by-items analysis to reveal the precise contribution
of multiple variables to learning behaviour (e.g., Beckers et al., 2017).

The studies included here were selected from an objective literature search on
SCOPUS, intending to avoid bias in our selection of tests, focusing on studies of AGL
that describe the modality of the stimuli. Interestingly, except in the case of birds,
modality was not found to affect the results, but this may also have been affected by
observed publication bias. Expanding further to a literature search of an even broader
literature would help to determine more clearly which moderators are affecting
performance, and which are orthogonal to artificial grammatical learning. There are,
for instance, other structures that are of key interest to both language acquisition
research, and cross-species investigations of the limits of grammar learning — such as
distinctions between phrase structure and finite-state grammars (Fitch & Friederici,
2012; Fitch & Hauser, 2004), or focused on hierarchical centre-embedded structures
(Lai & Poletiek, 2011). Debates on the learnability of these structures (e.g., de Vries et
al., 2008) will be facilitated by a wider survey of the published literature. In our
blueprint for a meta-analysis approach in this field, we have made an illustrative first
step toward providing a perspective on what is learned and what is learnable within and

across species.
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