NZ GREEN Grid Household Electricity Demand Study

1 minute electricity power (version 1.0)

Anderson, B., Eyers, D., Ford, R., Giraldo Ocampo, D., Peniamina, R., Stephenson, J., Suomalainen, K., Wilcocks, L. and Jack, M.

Last run at: 2018-08-30 14:45:58 (Pacific/Auckland)

1 About

1.1 Report circulation:

• Public – this report is intended to accompany the data release.

1.2 License

This work is made available under the Creative Commons Attribution-ShareAlike 4.0 International (CC BY-SA 4.0) License (https://creativecommons.org/licenses/by-sa/4.0/).

This means you are free to:

- Share copy and redistribute the material in any medium or format
- Adapt remix, transform, and build upon the material for any purpose, even commercially.

Under the following terms:

- *Attribution* You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- ShareAlike If you remix, transform, or build upon the material, you must distribute your contributions under the same license as the original.
- *No additional restrictions* You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.

Notices:

- You do not have to comply with the license for elements of the material in the public domain or where your use is permitted by an applicable exception or limitation.
- No warranties are given. The license may not give you all of the permissions necessary for your intended use. For example, other rights such as publicity, privacy, or moral rights may limit how you use the material. #YMMV

For the avoidance of doubt and explanation of terms please refer to the full license notice (https://creativecommons.org /licenses/by-sa/4.0/) and legal code (https://creativecommons.org/licenses/by-sa/4.0/) equal co

1.3 Citation

If you wish to use any of the material from this report please cite as:

Anderson, B., Eyers, D., Ford, R., Giraldo Ocampo, D., Peniamina, R., Stephenson, J., Suomalainen, K., Wilcocks, L. and Jack, M. (2018) NZ GREEN Grid Household Electricity Demand Study: 1 minute electricity power (version 1.0), Centre for Sustainability (http://www.otago.ac.nz/centre-sustainability/), University of Otago: Dunedin.

This work is (c) 2018 the University of Southampton.

1.4 History

You may not be reading the most recent version of this report. Please check:

- the overall package documentation (https://cfsotago.github.io/GREENGridData/);
- this report's edit history (https://github.com/CfSOtago/GREENGridData/commits/master/makeDocs /buildGridSpy1mReport.Rmd)

1.5 Support

This work was supported by:

- The University of Otago (https://www.otago.ac.nz/);
- The University of Southampton (https://www.southampton.ac.uk/);
- The New Zealand Ministry of Business, Innovation and Employment (MBIE) (http://www.mbie.govt.nz/) through the NZ GREEN Grid (https://www.otago.ac.nz/centre-sustainability/research/energy/otago050285.html) grant (Contract ID: UOCX1203);
- SPATIALEC (http://www.energy.soton.ac.uk/tag/spatialec/) a Marie Skłodowska-Curie Global Fellowship (http://ec.europa.eu/research/mariecurieactions/about-msca/actions/if/index_en.htm) based at the University of Otago's Centre for Sustainability (http://www.otago.ac.nz/centre-sustainability/staff/otago673896.html) (2017-2019) & the University of Southampton's Sustainable Energy Research Group (2019-202).

2 Introduction

The NZ GREEN Grid household electricity demand study (https://cfsotago.github.io/GREENGridData/) recruited a sample of c 25 households in each of two regions of New Zealand (Stephenson et al. 2017). The first sample was recruited in early 2014 and the second in early 2015. Research data includes:

- 1 minute electricity power (W) data was collected for each dwelling circuit using GridSpy (https://gridspy.com/) monitors on each power circuit (and the incoming power). The power values represent mean(W) over the minute preceeding the observation timestamp;
- Dwelling & appliance surveys;
- Occupant time-use diaries (focused on energy use).

NB: Version 1 of the data package does not include the time-use diaries.

This report provides summary data quality statistics for the original GREEN Grid GridSpy household power demand monitoring data. This data was used to create a derived 'safe' dataset using the code in the GREENGridData (https://github.com/CfSOtago/GREENGridData) repository.

3 Original Data: Quality checks

The original data files files are stored on the University of Otago's High-Capacity Central File Storage HCS (https://www.otago.ac.nz/its/services/hosting/otago068353.html).

Data collection is ongoing and this section reports on the availability of data files collected up to the time at which the most recent safe file was created (2018-08-02 18:03:19). To date we have 25,148 files from 44 unique GridSpy IDs.

However a large number of files (14,929 or 59%) have 1 of two file sizes (43 or 2751 bytes) and we have determined that they contain no data as the monitoring devices have either been removed (households have moved or withdrawn from the study) or data transfer has failed. We therefore flag these files as 'to be ignored'.

In addition two of the GridSpy units were re-used in new households following withdrawal of the original participants. The GridSpy IDs (rf_XX) remained unchanged despite allocation to different households. The original input data does not therefore distinguish between these households and we discuss how this is resolved in the clean safe data in Section 4.1 below.

3.1 Input data file quality checks

Figure 3.1 shows the distribution of the file sizes of *all* files over time by GridSpy ID. Note that white indicates the presence of small files which may not contain observations.

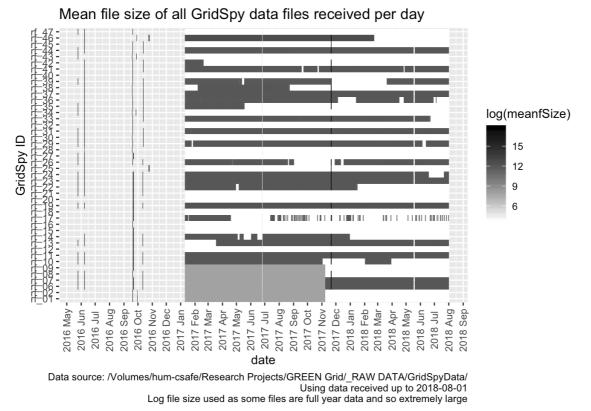
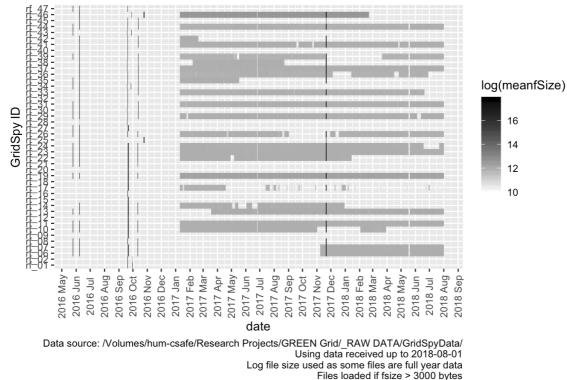



Figure 3.1: Mean file sizes (all files)

As we can see, relatively large files were downloaded (manually) in June and October 2016 before an automated download process was implemented from January 2017. A final manual download appears to have taken place in early December 2017.

Figure 3.2 plots the same results but *excludes* files which do not meet the file size threshold and which we therefore assume do not contain data.

Mean file size of loaded GridSpy data files received per day

Figure 3.2: Mean file sizes (file size > threshold)

As we can see this removes a large number of the automatically downloaded files.

3.2 Input date format checks

As noted above, the original data was downloaded in two ways:

- Manual download of large samples of data. In this case the dateTime of the observation appears to have been stored in NZ time and appears also to have varying dateTime formats (d/m/y, y/m/d and even in some cases the inexplicable m/d/y (https://speakerdeck.com/jennybc/how-to-name-files?slide=22));
- Automatic download of daily data. In this case the origial dateTime of the observation was stored as UTC.

Resolving and cleaning these variations and uncertainties have required substantial effort (https://github.com/CfSOtago /GREENGridData/issues/2) and in some cases the date format (and thus time when timezones are set) has had to be inferred from the file names. A key lesson for future projects is always to ensure that files are named so that meta data is easily parsed (https://speakerdeck.com/jennybc/how-to-name-files?slide=10) and that there can be one *and only one*:

- dateTime format (https://speakerdeck.com/jennybc/how-to-name-files?slide=21) (YYY-MM-DD HH:MM:SS);
- timezone (https://lubridate.tidyverse.org/reference/#section-other-modification-functions) (UTC)

Table 3.1 lists up to 10 of the 'date NZ' files which are set by default - do they look OK to assume the default dateFormat? Compare the file names with the dateExample...

```
# list default files with NZ time
aList <- fListCompleteDT[dateColName == "date NZ" & dateFormat %like% "default",
                          .(file, fSize, dateColName, dateExample, dateFormat)]
cap <- paste0("First 10 (max) of ", nrow(aList),
                             " files with dateColName = 'date NZ' and default dateFormat")
kableExtra::kable(caption = cap, head(aList, 10), digits = 2) %>%
kable_styling()
```

Table 3.1: First 10 (max) of 12 files with dateColName = 'date NZ' and default dateFormat

file	fSize	dateColName	dateExample	dateFormat
rf_01/1Jan2014-24May2014at1.csv	6255737	date NZ	2014-01-06	ymd - default (but day/month value <= 12)
rf_02/1Jan2014-24May2014at1.csv	6131625	date NZ	2014-03-03	ymd - default (but day/month value <= 12)
rf_06/24May2014-24May2015at1.csv	19398444	date NZ	2014-06-09	ymd - default (but day/month value <= 12)
rf_10/24May2014-24May2015at1.csv	24386048	date NZ	2014-07-09	ymd - default (but day/month value <= 12)
rf_11/24May2014-24May2015at1.csv	23693893	date NZ	2014-07-08	ymd - default (but day/month value <= 12)
rf_12/24May2014-24May2015at1.csv	21191785	date NZ	2014-07-09	ymd - default (but day/month value <= 12)
rf_13/24May2014-24May2015at1.csv	27921928	date NZ	2014-06-06	ymd - default (but day/month value <= 12)
rf_16/24May2014-24May2015at1.csv	20037376	date NZ	2014-07-10	ymd - default (but day/month value <= 12)
rf_22/24May2014-24May2015at1.csv	27242670	date NZ	2014-06-06	ymd - default (but day/month value <= 12)

file	fSize	dateColName	dateExample	dateFormat
rf_26/24May2014-24May2015at1.csv	23624225	date NZ	2014-07-11	ymd - default (but day/month value <= 12)

Table 3.2 lists up to 10 of the 'date UTC' files which are set by default - do they look OK to assume the default dateFormat? Compare the file names with the dateExample...

Table 3.2: First 10 (max) of 3957 files with dateColName = 'date UTC' and default dateFormat

file	fSize	dateColName	dateExample	dateFormat
rf_06/10Apr2018-11Apr2018at1.csv	156944	date UTC	2018-04-09	ymd - default (but day/month value <= 12)
rf_06/10Dec2017-11Dec2017at1.csv	156601	date UTC	2017-12-09	ymd - default (but day/month value <= 12)
rf_06/10Feb2018-11Feb2018at1.csv	153353	date UTC	2018-02-09	ymd - default (but day/month value <= 12)
rf_06/10Jan2018-11Jan2018at1.csv	153982	date UTC	2018-01-09	ymd - default (but day/month value <= 12)
rf_06/10Jul2018-11Jul2018at1.csv	158338	date UTC	2018-07-09	ymd - default (but day/month value <= 12)
rf_06/10Jun2018-11Jun2018at1.csv	156641	date UTC	2018-06-09	ymd - default (but day/month value <= 12)
rf_06/10Mar2018-11Mar2018at1.csv	156471	date UTC	2018-03-09	ymd - default (but day/month value <= 12)
rf_06/10May2018-11May2018at1.csv	156683	date UTC	2018-05-09	ymd - default (but day/month value <= 12)
rf_06/10Nov2017-11Nov2017at1.csv	155639	date UTC	2017-11-09	ymd - default (but day/month value <= 12)
rf_06/11Apr2018-12Apr2018at1.csv	157181	date UTC	2018-04-10	ymd - default (but day/month value <= 12)

After final cleaning, the final date formats are shown in Table 3.3.

Table 3.3: Number of files & min/max dates (as char) with given date column names by final imputed date format

dateColName dateFormat nFiles meanFSizeKb minFSizeKb maxFSizeKb minFDate maxFDate

dateColName	dateFormat	nFiles	meanFSizeKb	minFSizeKb	maxFSizeKb	minFDate	maxFDate
Unknown - ignore as fsize (2751) < dataThreshold (3000)	NA	1812	2.686523	2.686523	2.686523	2017-01-11	2017-11-08
Unknown - ignore as fsize (43) < dataThreshold (3000)	NA	13117	0.04199219	0.04199219	0.04199219	2017-01-11	2018-08-01
date NZ	dmy - definite	1	4,097.157	4,097.157	4,097.157	2016-09-29	2016-09-29
date NZ	mdy - definite	2	13,833.84	9,067.765	18,599.92	2016-10-25	2016-10-25
date NZ	ymd - default (but day/month value <= 12)	12	16,862.1	2,652.745	27,267.51	2016-09-20	2016-10-13
date NZ	ymd - definite	67	11,248.34	228.9131	31,502.92	2016-09-19	2016-10-13
date UTC	dmy - inferred	28	27,304.84	569.8506	53,282.66	2016-05-25	2017-11-21
date UTC	ymd - default (but day/month value <= 12)	3957	315.9203	20.63379	40,318.22	2016-09-19	2018-07-14
date UTC	ymd - definite	6152	292.2984	21.20605	50,810.54	2016-06-08	2018-08-01

Results to note:

- The non-loaded files only have 2 distinct file sizes, confirming that they are unlikely to contain useful data.
- There are a range of dateTme formats these are fixed in the data cleaning process and all datesTimes have been set to UTC except where explicitly labelled. Note that R will load UTC data with the local timezone so if you reuse the data in New Zealand this will be correct. If you re-use the data outside New Zealand you will need to set the timezone accordingly or you will get thoroughly confused. We are not great fans of timezones (https://github.com/CfSOtago/GREENGridData/issues/2).
- Following detailed checks there are now 0 files which are still labelled as having ambiguous dates.

4 Processed Data: Quality checks

In this section we analyse the data files that have a file size > 3000 bytes and which have been used to create the safe data. Things to note:

- As indicated above, we assume that any files smaller than this value have no observations. This is based on:
 Manual inspection of several small files;
 - The identical (small) file sizes involved.
- There was substantial duplication of observations, some of which was caused by the different date formats, especially where they run through Daylight Savings Time (DST) changes.

Table 4.1 shows the number of files per GridSpy ID that are actually processed to make the safe version together with the min/max file save dates (not the observed data dates).

Table 4.1: Summary of household files to load

gridSpyID	nFiles	meanSize	minFileDate	maxFileDate
rf_01	3	15548174.7	2016-09-20	2016-09-30
rf_02	3	10134268.3	2016-09-20	2016-09-30
rf_06	269	594678.4	2016-05-25	2018-08-01
rf_07	269	634734.7	2016-05-25	2018-08-01
rf_08	5	23989121.0	2016-05-25	2017-11-21
rf_09	2	14344605.0	2016-09-21	2016-09-21
rf_10	358	525455.1	2016-05-25	2018-03-30
rf_11	571	385151.5	2016-05-25	2018-08-01
rf_12	2	10713096.0	2016-09-21	2016-09-21
rf_13	503	436966.2	2016-05-25	2018-08-01
rf_14	329	424262.0	2016-06-08	2017-12-31
rf_15	2	10553143.0	2016-09-21	2016-09-21
rf_16	1	20037376.0	2016-09-20	2016-09-20
rf_17	237	359559.1	2016-09-21	2018-08-01
rf_18	2	14374309.5	2016-09-21	2016-09-21
rf_19	571	510715.0	2016-05-25	2018-08-01
rf_20	2	14665810.0	2016-09-21	2016-09-21
rf_21	4	23058797.8	2016-05-25	2016-10-12
rf_22	371	533704.4	2016-05-25	2018-01-16
rf_23	571	398072.9	2016-05-25	2018-08-01
rf_24	539	401860.5	2016-05-25	2018-08-01
rf_25	3	12341581.3	2016-06-08	2017-11-21
rf_26	477	363087.9	2016-05-25	2018-08-01
rf_27	3	22607698.7	2016-05-25	2016-09-21
rf_28	2	2297483.0	2016-06-08	2016-09-19
rf_29	561	315512.4	2016-05-25	2018-08-01
rf_30	5	13695336.0	2016-05-25	2016-10-13

gridSpyID	nFiles	meanSize	minFileDate	maxFileDate
rf_31	571	313201.3	2016-05-25	2018-08-01
rf_32	2	13934454.0	2016-06-08	2016-09-20
rf_33	530	275592.6	2016-06-08	2018-06-22
rf_34	7	14106275.3	2016-05-25	2016-10-13
rf_35	134	573648.6	2016-05-25	2017-11-21
rf_36	490	282969.5	2016-06-08	2018-07-05
rf_37	570	279298.0	2016-06-08	2018-08-01
rf_38	201	385707.5	2016-06-08	2017-11-21
rf_39	447	336601.0	2016-05-25	2018-08-01
rf_40	2	9299902.0	2016-06-08	2016-09-20
rf_41	562	248760.0	2016-06-08	2018-08-01
rf_42	45	1315953.6	2016-06-08	2017-11-21
rf_43	4	9442492.0	2016-05-25	2016-09-28
rf_44	571	313990.0	2016-05-25	2018-08-01
rf_45	4	10513812.0	2016-06-08	2017-11-21
rf_46	411	605048.1	2016-06-08	2018-02-21
rf_47	3	17544847.0	2016-05-25	2016-09-20

4.1 Recoding re-allocated GridSpy units

As noted in the introduction, two units were re-allocated to new households during the study. These were:

- rf_15 allocated to a new household on 20/1/2015
- rf_17 allocated to a new household on

To avoid confusion the data for each of these units has been split in to rf_XXa/rf_XXb files on the appropriate dates during data processing (https://github.com/CfSOtago/GREENGridData/issues/3). In principle therefore the clean data should contain data files for:

- rf_15a and rf_15b
- rf_17a and rf_17b

However rf_15a did not collect usable data before the unit was re-allocated so only files for rf_15b, rf_17a and rf_17b exist in the archive.

Each cleaned safe data file contains both the original hhID (i.e. the GridSpy ID) and a new linkID which has the same value as hhID except in the case of these three files. The linkID variable should **always** be used to link the GridSpy data to the survey or other household level data in the data package.

In all subsequent analysis we use linkID to give results for each household.

4.2 Observations

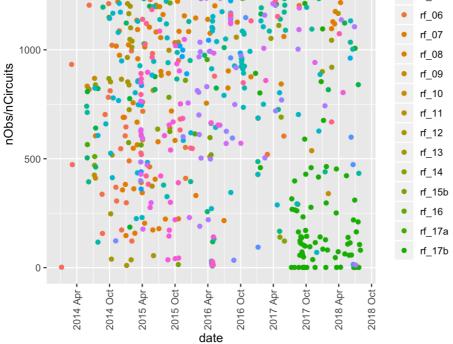

The following plots show the number of observations per day per household. In theory we should not see:

- dates before 2014 or in to the future. These may indicate:
 o date conversion errors;
- more than 1440 observations per day. These may indicate:
 - duplicate time stamps i.e. they have the same time stamps but different power (W) values or different circuit labels. These may be expected around the DST changes in April/September. These can be examined on a per household basis using the rf_xx_observationsRatioPlot.png plots to be found in the data package *checkPlots* folder;
 - observations from files that are in the 'wrong' rf_XX folder and so are included in the 'wrong' household as 'duplicate' time stamps.

If present both of the latter may have been implied by the table above and would have evaded the de-duplication filter which simply checks each complete row against all others within its consolidated household dataset (a *within household absolute duplicate* check).

Note that rf_15a is not present as no usable data was obtained from this household.

Figure 4.1 uses a tile plot which is useful for visualising data gaps.


N observations per household per circuit per day for all loaded GridSpy data

Data source: /Volumes/hum-csafe/Research Projects/GREEN Grid/_RAW DATA/GridSpyData/ Using data received up to 2018-08-01 Only files of size > 3000 bytes loaded

Figure 4.1: Observations tile plot

Figure 4.2 uses a point plot which is useful for visualising days where there was partial data.

N observations per household per circuit per day for all loaded GridSpy data 1500 linkID rf_01 rf_18 rf 02 19 rf rf_06 rf_20 . rf_07 rf_21 1000 rf_08 rf_22

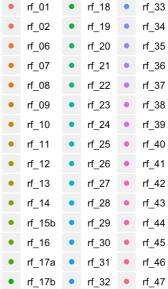


Figure 4.2: Observations tile plot

Table 4.2: Summary observation stats by hhID

linkID	minObs	maxObs	meanN_Circuits	minDate	maxDate
rf_01	12	8871	6.00	2014-01-06	2015-10-20
rf_02	732	8640	6.00	2014-03-03	2015-05-28
rf_06	2460	8825	6.00	2014-06-09	2018-08-01
rf_07	882	8893	6.00	2014-07-14	2018-08-01
rf_08	1344	8847	6.00	2014-05-29	2017-05-15
rf_09	2466	8915	6.00	2014-07-14	2015-07-16
rf_10	2040	8840	6.00	2014-07-09	2018-03-29
rf_11	2549	8826	6.00	2014-07-08	2018-08-01
rf_12	60	8838	6.00	2014-07-09	2015-06-03
rf_13	4925	8934	6.00	2014-06-06	2018-08-01
rf_14	732	8868	6.00	2014-07-14	2017-12-30
rf_15b	84	8640	6.00	2015-01-15	2016-04-19
rf_16	3060	8937	6.00	2014-07-10	2015-03-26

rce: /Volumes/hum-csafe/Research Projects/GREEN Grid/_RAW DATA/GridSpyData/ Using data received up to 2018-08-01 Only files of size > 3000 bytes loaded

linkID	minObs	maxObs	meanN_Circuits	minDate	maxDate
rf_17a	3390	8854	6.00	2014-05-30	2016-03-28
rf_17b	6	8640	6.00	2016-10-12	2018-07-31
rf_18	1116	8849	6.00	2014-05-30	2015-06-11
rf_19	72	13161	9.00	2014-07-15	2018-08-01
rf_20	3024	8878	6.00	2014-05-29	2015-06-11
rf_21	1542	8854	6.00	2014-07-15	2016-07-01
rf_22	1002	8873	6.00	2014-06-06	2018-01-15
rf_23	2370	8816	6.00	2014-05-26	2018-08-01
rf_24	702	8760	6.00	2014-05-29	2018-08-01
rf_25	72	8818	6.00	2015-05-25	2016-10-22
rf_26	420	8857	6.00	2014-07-11	2018-08-01
rf_27	2610	8873	6.00	2014-07-28	2016-05-14
rf_28	4476	8640	6.00	2015-03-27	2015-05-26
rf_29	5088	8797	6.00	2015-03-26	2018-08-01
rf_30	5016	8865	6.00	2015-03-28	2016-09-29
rf_31	2166	8848	6.00	2015-03-26	2018-08-01
rf_32	2640	8775	6.00	2015-03-26	2016-04-05
rf_33	90	8888	6.00	2015-03-24	2018-06-21
rf_34	204	8825	6.00	2014-11-04	2016-08-24
rf_35	2394	8839	6.00	2015-03-23	2017-05-17
rf_36	72	8787	6.00	2015-03-24	2018-07-04
rf_37	4584	8824	6.00	2015-03-24	2018-08-01
rf_38	1062	8861	6.00	2015-03-25	2017-08-22
rf_39	1490	7381	5.00	2015-03-28	2018-08-01
rf_40	3798	8849	6.00	2015-03-25	2015-11-22
rf_41	216	9014	6.00	2015-03-26	2018-08-01
rf_42	72	8819	6.00	2015-03-24	2017-02-18
rf_43	2340	8741	6.00	2015-03-27	2015-10-19
rf_44	5346	8768	6.00	2015-03-25	2018-08-01
rf_45	4770	8758	6.00	2015-03-25	2016-10-15

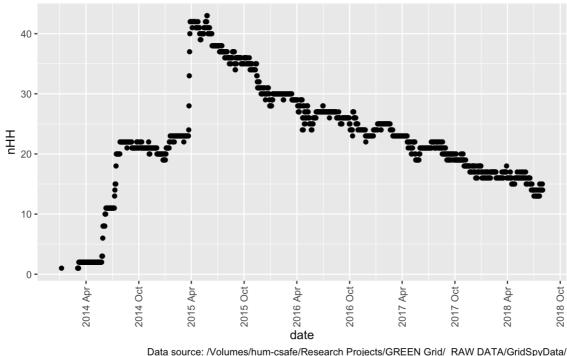

linkID	minObs	maxObs	meanN_Circuits	minDate	maxDate
rf_46	2526	19357	12.84	2015-03-27	2018-02-20
rf_47	3156	8818	6.00	2015-03-25	2016-05-08

Table 4.2 shows the min/max number of observations per day and min/max dates for each household. As above, we should not see:

- dates before 2014 or in to the future (indicates date conversion errors);
- fewer than 1440 observations per day (since we should have at least 1 circuit monitored for 24 * 60 = 1440 minutes);
- non-integer counts of circuits as it suggests some circuit label errors or changes to the number of circuits monitored over time;
- NA in any row (indicates date conversion errors).

If we do see any of these then we still have data cleaning work to do!

Finally Figure 4.3 plots the total number of households for whom we have *any* data on a given date. This gives an indication of the attrition rate.

N live households per day for all loaded grid spy data

Data source: /Volumes/hum-csafe/Research Projects/GREEN Grid/_RAW DATA/GridSpyData/ Using data received up to 2018-08-01 Only files of size > 3000 bytes loaded

Figure 4.3: Attrition over time

4.3 Date and time checks

As we noted above the original data had a variety of date formats. The data processing code does as good a job as it can of parsing non-UTC dateTimes (https://github.com/CfSOtago/GREENGridData /blob/a70d9d4fc7a4ee8406cda2c8bb458bd324ff6f43/R/gridSpyData.R#L309) (i.e. the observations with time as NZT) to force the r_dateTime variable to always record as UTC.

Any duplicate observations were then removed by checking for exact repeats of the linkID <-> r_dateTime <-> circuit <-> powerW tuple. Note that this only checks for duplicates in terms of UTC...

This has consequences for Daylight Savings Time changes as follows:

• data which was originally stored as UTC (dateTime_orig is UTC so TZ_orig == "date UTC") is still recorded as UTC. If you load the data using a function which auto-parses dateTimes into your local time (e.g.

readr::read_csv()) you will find the parser will (correctly) produce duplicate (or missing) time values during the relevant DST break. The underlying UTC dateTime will *not* have duplicates or missing observations (unless the data really is missing!), only the super-imposed local time representation used for printing, charts etc. This may cause confusion.

• data which was originally stored as NZT (dateTime_orig is NZT so TZ_orig == "date NZ") will already have had duplicate (or missing) times during the DST breaks. The data processing code will have attempted to convert the duplicates to identical UTC moments in time and any *exact* duplicates will have been 'accidentally' removed during the duplicate checking process described above. This may also cause confusion.

To add even more confusion it is *possible* that attempts were made to 'correct' the time stamps in the DST breaks in the original data before it was downloaded by the research team. As it is almost impossible for us to determine what was, or should be done in your research context we:

- have retained the original timestamp in the data in the dateTime_orig column;
- have flagged our best guess (see above) of the original date format in the data in the *Tz_orig* column;
- suggest that users carefully check these columns against the r_dateTime column if they see strange errors around the DST breaks;
- suggest that users learn how to use lubridate (https://lubridate.tidyverse.org/reference/lubridate-package.html) to manipulate dates, time and time zones and thus what lubridate did during data processing (https://github.com /CfSOtago/GREENGridData/blob/a70d9d4fc7a4ee8406cda2c8bb458bd324ff6f43/R/gridSpyData.R#L309);
- **strongly** suggest that if at all possible, users *avoid* using data from the days when there are DTS breaks (see Table 4.3).

date	time	label
28/09/2014	02:00	<- DST starts
05/04/2015	02:00	<- DST ends
27/09/2015	02:00	<- DST starts
03/04/2016	02:00	<- DST ends
25/09/2016	02:00	<- DST starts
02/04/2017	02:00	<- DST ends
24/09/2017	02:00	<- DST starts
01/04/2018	02:00	<- DST ends

Table 4.3: NZ DST breaks

We do not like timezones but we like DST even less. As an example, consider what happens in the following R code:

First set a dateTime and tell lubridate (and R) it is NZT:

> dateTimeNZT1 <- lubridate::ymd_hm("2014-09-28 01:50", tz = "Pacific/Auckland")</pre>

Did it work?

> dateTimeNZT1

[1] "2014-09-28 01:50:00 NZST"

Yes.

Now set a dateTime that does not exist as it lies inside the DST break (see Table 4.3):

> dateTimeNZT2 <- lubridate::ymd_hm("2014-09-28 02:01", tz = "Pacific/Auckland")</pre>

Warning message: 1 failed to parse.

Boom. Lubridate knows it does not exist in local (civil) time. But of course it does exist as UTC:

```
> dateTimeUTC <- lubridate::ymd_hm("2014-09-28 02:01", tz = "UTC")
> dateTimeUTC
[1] "2014-09-28 02:01:00 UTC"
Yes, we love timezones and DST.
```

So:

If in doubt load the data without any auto-parsing and have a good look at it!

4.4 Circuit label checks

The following table (4.4) shows the number of files for each household with different circuit labels. In theory each GridSpy ID should only have one set of unique circuit labels. If not:

- some of the circuit labels for these households may have been changed during the data collection process;
- some of the circuit labels may have character conversion errors which have changed the labels during the data collection process;
- at least one file from one household has been saved to a folder containing data from a different household (unfortunately the raw data files do *not* contain household IDs in the data or the file names which would enable checking/preventative filtering). This will be visible in the table if two households appear to share *exactly* the same list of circuit labels.

Some or all of these may be true at any given time.

Table 4.4: Circuit labels list by number of files per household

linkID	circuitLabels	nFiles	nObs	meanDailyPowerkW	minDailyPowerkW	maxDailyPowerkW
rf_01	Kitchen power\$1632, Heating\$1633, Mains\$1634, Lights\$1635, Hot water\$1636, Range\$1637	594	5111157	0.53	-0.07	13.56
rf_02	Fridge\$1572, Cooking Bath tile heat\$1573, Hot Water\$1574, Mains\$1575, Heating\$1576, Lights\$1577	415	3487293	0.22	-0.33	10.20
rf_06	Lighting\$2244, Laundry, Downstairs & Lounge\$2245, Kitchen\$2246, Oven & Hob\$2247, Hot Water - Controlled\$2248, Incomer - Uncontrolled\$2249	1328	11411167	0.24	-1.44	8.95

linkID	circuitLabels	nFiles	nObs	meanDailyPowerkW	minDailyPowerkW	maxDailyPowerkW
rf_07	Microwave\$2721, Kitchen Appliances & Laundry\$2722, Workshop\$2723, Oven\$2724, Incomer 2 - Uncontrolled\$2725, Incomer 1 - Uncontrolled\$2726	1425	12061885	0.16	-0.83	7.12
rf_08	Kitchen\$2089, Laundry & 2nd Fridge Freezer\$2090, Oven & Hob\$2091, Heat Pump\$2092, Incomer - Uncontrolled\$2093, Hot Water - Controlled\$2094	1083	9289503	0.24	0.00	11.66
rf_09	Kitchen Appliances\$2727, Lounge, Dining & Bedrooms\$2728, Incomer 1 - Uncont - Inc Hob\$2729, Incomer 2 - Uncont - Inc Oven\$2730, Heat Pump & Bedroom 2\$2731, Laundry\$2732	368	3167835	0.18	-0.04	5.95
rf_10	Laundry & Garage\$2597, Heat Pump\$2598, Incomer - All\$2599, Oven\$2600, Kitchen Appliances\$2601, Bedrooms & Lounge\$2602	1268	10932797	0.19	-0.37	9.86
rf_11	Incomer - Uncontrolled\$2585, Hot Water Cpbd Heater- Cont\$2586, Spa - Uncontrolled\$2587, Kitchen Appliances & Laundry\$2588, Hob\$2589, Heat Pump & Lounge\$2590	1481	12763308	0.15	0.00	10.94

linkID	circuitLabels	nFiles	nObs	meanDailyPowerkW	minDailyPowerkW	maxDailyPowerkW
rf_12	Incomer 2 - Uncontrolled\$2625, Incomer 1 - Hot Water - Cont\$2626, Incomer 3 - Uncontrolled\$2627, Laundry, Fridge & Microwave\$2628, Oven\$2629, Kitchen Appliances & Lounge\$2630	289	2389215	0.18	-1.40	7.27
rf_13	Hot Water - Controlled\$2208, Incomer - Uncontrolled\$2209, Oven & Hob\$2210, Upstairs Heat Pumps\$2211, Downstairs (inc 1 Heat Pump)\$2212, Kitchen & Laundry\$2213	1516	13080941	0.39	-3.97	11.58
rf_14	Kitchen Appliances\$2715, Power Outlets\$2716, Incomer 2 - Uncont inc Oven\$2717, Incomer 1 - Uncont inc Stove\$2718, Hot Water - Controlled\$2719, Laundry & Microwave\$2720	1244	10700939	0.15	-2.36	6.48
rf_15b	Laundry & Kitchen Appliances\$3951, Hot Water\$3952, Oven\$3953, Hob\$3954, Incomer 2\$3955, Incomer 1\$3956	276	2345250	0.33	-1.16	8.12

linkID	circuitLabels	nFiles	nObs	meanDailyPowerkW	minDailyPowerkW	maxDailyPowerkW
rf_16	Hot Water - Controlled\$2679, Incomer 2 - Uncont inc Stove\$2680, Incomer 1 - Uncont inc Oven\$2681, Microwave & Breadmaker\$2682, Hallway & Washing Machine\$2683, Kitchen Appliances & Bedrooms\$2684	260	2234133	0.12	-0.27	6.26
rf_17a	Kitchen Appliances\$2147, Heat Pump\$2148, Laundry\$2149, Hot Water - Controlled\$2150, Incomer 2 - Uncont - inc Oven\$2151, Incomer 1 - Uncont - inc Hob\$2152	669	5760067	0.11	-1.13	8.19
rf_17b	Incomer 1 - inc Top Oven\$5620, Incomer 2 - inc Bottom Oven\$5621, Lighting 2/2\$5622, Lighting 1/2\$5623, Laundry & Garage\$5624, Kitchen Appliances\$5625	257	1632900	0.09	-0.10	4.64
rf_18	Incomer 1 - Uncontrolled\$2128, Hot Water - Controlled\$2129, Incomer 2 - Uncontrolled\$2130, Kitchen Appliances & Ventilati\$2131, Oven\$2132, Laundry & Hob\$2133	378	3243033	0.33	-2.58	8.82

linkID	circuitLabels	nFiles	nObs	meanDailyPowerkW	minDailyPowerkW	maxDailyPowerkW
rf_19	PV 1\$2739, Theatre Heat Pump\$2740, Bedroom & Lounge Heat Pumps\$2741, PV 2\$2733, Laundry\$2734, Kitchen Appliances\$2735, Oven\$2736, Incomer 2 - All\$2737, Incomer 1 - All\$2738	1	5766	-0.02	-2.39	2.06
rf_19	PV 2\$2733, Laundry\$2734, Kitchen Appliances\$2735, Oven\$2736, Incomer 2 - All\$2737, Incomer 1 - All\$2738, PV 1\$2739, Theatre Heat Pump\$2740, Bedroom & Lounge Heat Pump\$2741	1471	18977224	-0.18	-4.63	5.28
rf_20	Heat Pump & Misc\$2107, Oven & Kitchen Appliances\$2108, Hob\$2109, Hot Water - Controlled\$2110, Incomer 2 - Uncontrolled\$2111, Incomer 1 - Uncontrolled\$2112	379	3260738	0.21	-3.15	6.21
rf_21	Incomer - All\$2748, Oven\$2749, Heat Pump & Washing Machine\$2750, Lower Bedrooms & Bathrooms\$2751, Fridge\$2752, Kitchen Appliances & Garage\$2753	704	6061797	0.14	-0.03	7.99

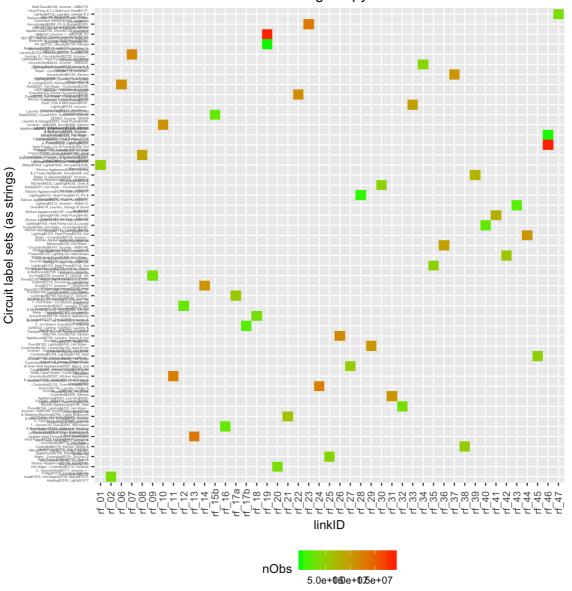
linkID	circuitLabels	nFiles	nObs	meanDailyPowerkW	minDailyPowerkW	maxDailyPowerkW
rf_22	Lighting\$2232, Ventilation & Lounge Power\$2233, Kitchen & Laundry\$2234, Oven\$2235, Hot Water - Controlled\$2236, Incomer - Uncontrolled\$2237	1314	11312684	0.37	-1.43	15.50
rf_23	Spa (HEMS)\$2080, Hot Water - Controlled (HEMS)\$2081, Incomer - Uncontrolled\$2082, PV & Storage\$2083, Kitchen, Laundry & Ventilation\$2084, Oven\$2085	1525	13086959	0.26	-2.12	11.02
rf_24	Incomer - Uncontrolled\$2101, Hot Water - Controlled\$2102, Oven & Hob\$2103, Kitchen\$2104, Laundry, Fridge & Freezer\$2105, PV\$2106	1469	12645693	-0.09	-4.95	6.93
rf_25	Heat Pump\$2758, Hob & Kitchen Appliances\$2759, Oven\$2760, Hot Water - Controlled\$2761, Incomer 2 - Uncontrolled \$2762, Incomer 1 - Uncontrolled \$2763	507	4237240	0.27	-0.04	7.14
rf_26	Incomer 1 - All\$2703, Incomer 2 - All\$2704, Oven\$2705, Kitchen Appliances\$2706, Laundry, Sauna & 2nd Fridge\$2707, Spa\$2708	1369	11632001	0.21	-1.27	30.82

linkID	circuitLabels	nFiles	nObs	meanDailyPowerkW	minDailyPowerkW	maxDailyPowerkW
rf_27	Incomer - Uncontrolled\$2824, Hot Water - Controlled\$2825, Heat Pump\$2826, Oven & Oven Wall Appliances\$2827, Bed 2, 2nd Fridge\$2828, Kitchen, Laundry & Beds 1&3\$2829	637	5452235	0.29	-0.36	27.76
rf_28	Kitchen Appliances\$4216, Laundry\$4217, Lighting\$4218, Heat Pump\$4219, PV & Garage\$4220, Incomer - All\$4221	61	518062	-0.07	-3.57	7.96
rf_29	Incomer - Uncontrolled\$4181, Oven\$4182, Lighting\$4183, Hot Water - Controlled\$4184, Laundry\$4185, Heat Pump & Kitchen Appliances\$4186	1217	10498747	0.39	-0.02	8.89
rf_30	Kitchen Appliances\$4234, Laundry & Kitchen\$4235, Lighting\$4236, Oven & Hobb\$4237, Hot Water - Controlled\$4238, Incomer - All\$4239	519	4462859	0.23	-0.02	8.71
rf_31	Incomer - All\$4199, Hot Water - Controlled\$4200, Kitchen Appliances\$4201, Laundry\$4202, Lighting\$4203, Heat Pump\$4204	1224	10561695	0.18	0.00	10.55

NZ GREEN Grid Household Electricity Demand Study

linkID	circuitLabels	nFiles	nObs	meanDailyPowerkW	minDailyPowerkW	maxDailyPowerkW
rf_32	Incomer - All\$4193, Laundry\$4194, Kitchen Appliances\$4195, Heat Pump\$4196, Lighting\$4197, Hot Water - Controlled\$4198	377	3246891	0.20	0.00	8.27
rf_33	Laundry & Teenagers Bedroom\$4139, Kitchen Appliances & Heat Pump\$4140, Oven, Hob & Microwave\$4141, Lighting\$4142, Incomer - Uncontrolled\$4143, Hot Water - Controlled\$4144	1117	9608753	0.20	0.00	9.53
rf_34	Lighting\$4222, Heat Pump\$4223, Hot Water - Uncontrolled\$4224, Incomer - All\$4225, Kitchen Appliances\$4226, Laundry & Garage Freezer\$4227	511	4383672	0.35	-0.40	13.04
rf_35	Kitchen Appliances\$4121, Laundry, Garage Fridge Freezer\$4122, Lighting\$4123, Heat Pump\$4124, Hot Water - Uncontrolled\$4125, Incomer - Uncontrolled\$4126	547	4692059	0.28	-0.99	7.62
rf_36	Kitchen Appliances\$4145, Washing Machine\$4146, Hot Water - Uncontrolled\$4147, Incomer - All\$4148, Lighting\$4149, Heat Pump\$4150	1128	9634326	0.22	-0.03	14.83

linkID	circuitLabels	nFiles	nObs	meanDailyPowerkW	minDailyPowerkW	maxDailyPowerkW
rf_37	Lighting\$4133, Heat Pump\$4134, Hot Water - Controlled\$4135, Incomer -Uncontrolled\$4136, Kitchen Appliances\$4137, Laundry & Fridge Freezer\$4138	1226	10580628	0.14	-0.06	6.68
rf_38	Heat Pump\$4175, Lighting\$4176, Incomer - Uncontrolled\$4177, Hot Water - Controlled\$4178, Kitchen, Dining & Office\$4179, Laundry, Lounge, Garage, Bed\$4180	621	5319113	0.26	-0.18	6.68
rf_39	Kitchen Appliances\$4244, Lighting & 2 Towel Rail\$4245, Oven\$4246, Hot Water (2 elements)\$4247, Incomer - Uncontrolled\$4248	1072	7686876	0.49	-1.11	12.48
rf_40	Kitchen Appliances\$4163, Laundry\$4164, Lighting\$4165, Heat Pump (x2) & Lounge Power\$4166, Hot Water - Controlled\$4167, Incomer - Uncontrolled\$4168	243	2089674	0.30	-0.59	10.70
rf_41	Kitchen Appliances\$4187, Laundry\$4188, Lighting\$4189, Heat Pump\$4190, Oven\$4191, Incomer - All\$4192	968	8238759	0.28	0.00	11.87


linkID	circuitLabels	nFiles	nObs	meanDailyPowerkW	minDailyPowerkW	maxDailyPowerkW
rf_42	Kitchen Appliances\$4127, Laundry & Freezer\$4128, Lighting (inc heat lamps)\$4129, Heat Pump\$4130, Hot Water - Uncontrolled\$4131, Incomer - All\$4132	686	5851654	0.39	-0.06	12.38
rf_43	Kitchen Appliances\$4210, Heat Pump\$4211, Lighting\$4212, Incomer - All\$4213, Oven\$4214, Laundry, Garage & Guest Bed\$4215	207	1777241	0.18	-0.13	6.69
rf_44	Kitchen Appliances\$4151, Laundry \$4152, Lighting\$4153, Heat Pump\$4154, Hot Water - Controlled\$4155, Incomer - Uncontrolled\$4156	1225	10572377	0.24	-0.02	9.00
rf_45	Incomer - Uncontrolled\$4157, Hot Water - Controlled\$4158, Lighting\$4159, Heat Pump\$4160, Kitchen Appliances\$4161, Laundry & Garage Fridge\$4162	571	4917962	0.18	0.00	7.61
rf_46	Laundry & Bedrooms\$4228, Kitchen & Bedrooms\$4229, Incomer - Uncontrolled\$4230, Hot Water - Controlled\$4231, Heat Pumps (2x) & Power\$4232, Lighting\$4233	23	180149	0.26	0.00	6.69

linkID	circuitLabels	nFiles	nObs	meanDailyPowerkW	minDailyPowerkW	maxDailyPowerkW
rf_46	Laundry & Bedrooms\$4228, Kitchen & Bedrooms\$4229, Incomer - Uncontrolled\$4230, Hot Water - Controlled\$4231, Heat Pumps (2x) & Power\$4232, Lighting\$4233, Heat Pumps (2x) & Power\$4399, Hot Water - Controlled\$4400, Incomer - Uncontrolled\$4401, Kitchen & Bedrooms\$4402, Laundry & Bedrooms\$4403, Lighting\$4404, Incomer Voltage\$4405	1015	18922974	0.23	-0.48	10.96
rf_47	Wall Oven\$4169, Incomer - All\$4170, Heat Pump & 2 x Bathroom Heat\$4171, Lighting\$4172, Laundry, Garage & 2 Bedrooms\$4173, Kitchen Power & Heat, Lounge\$4174	411	3530065	0.12	-0.02	11.17

Things to note:

- rf_25 has an additional unexpected "Incomer 1 Uncontrolled\$2757" circuit in some files but its value is always NA so it has been ignored;
- rf_46 had multiple circuit labels caused by apparent typos. These have been re-labelled (https://github.com /CfSOtago/GREENGridData/issues/1) but note that this is the only household to have 13 circuits monitored;
- there can be negative power.

Errors are easier to spot in the following plot where a household spans 2 or more circuit label sets (see Figure 4.4).

Circuit label counts for all loaded grid spy data

Data source: /Volumes/hum-csafe/Research Projects/GREEN Grid/_RAW DATA/GridSpyData/ Using data received up to 2018-08-01 Only files of size > 3000 bytes loaded

Figure 4.4: Circuit label check plot

If the above plot and table flag errors then further re-naming of the circuit labels may be necessary.

5 Calculating total household power demand

Unfortunately this is not as straightforward as one would wish because many households have seperately controlled (and thus monitored) hot water circuits which do not feed from the 'Incomer'. We have provided some example code to attempt to correctly sum the relevant circuits in each house. This make use of a circuits.csv file which specifies the circuits to use in each case:

- code (https://github.com/CfSOtago/GREENGridData/blob/master/examples/extract_per_house_totals.r): kindly
 provided by Jason Mair
- circuits.csv (see package data folder (https://github.com/CfSOtago/GREENGridData/tree/master/data))

6 Loading the cleaned data files

See the code examples (https://github.com/CfSOtago/GREENGridData/tree/master/examples) for suggestions on how to do this.

7 Runtime

Analysis completed in 27.7 seconds (0.46 minutes) using knitr (https://cran.r-project.org/package=knitr) in RStudio (http://www.rstudio.com) with R version 3.5.1 (2018-07-02) running on x86_64-apple-darwin15.6.0.

8 R environment

8.1 R packages used

- base R (R Core Team 2016)
- bookdown (Xie 2016a)
- GREENGridData (Anderson and Eyers 2018) which depends on:
 - data.table (Dowle et al. 2015)
 - o dplyr (Wickham and Francois 2016)
 - o hms (Müller 2018)
 - lubridate (Grolemund and Wickham 2011)
 - o progress (Csárdi and FitzJohn 2016)
 - readr (Wickham, Hester, and Francois 2016)
 - readxl (Wickham and Bryan 2017)
 - reshape2 (Wickham 2007)
- ggplot2 (Wickham 2009)
- kableExtra (Zhu 2018)
- knitr (Xie 2016b)
- rmarkdown (Allaire et al. 2018)
- stringr (Wickham 2016)

8.2 Session info

```
## R version 3.5.1 (2018-07-02)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS High Sierra 10.13.6
##
## Matrix products: default
## BLAS: /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framewo
rk/Versions/A/libBLAS.dvlib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en GB.UTF-8/en GB.UTF-8/en GB.UTF-8/C/en GB.UTF-8/en GB.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] stringr_1.3.1 bindrcpp_0.2.2 kableExtra_0.9.0
## [4] bookdown_0.7 rmarkdown_1.10 knitr_1.20.13
## [7] skimr_1.0.3 readxl_1.1.0 readr_1.1.1
## [10] lubridate_1.7.4 ggplot2_3.0.0 data.table_1.
                                                                 data.table_1.11.4
## [13] GREENGridData_1.0
##
## loaded via a namespace (and not attached):
## [1] progress_1.2.0 tidyselect_0.2.4 xfun_0.3
## [4] purrr_0.2.5 reshape2_1.4.3 colorspace_1.3-2
## [7] htmltools_0.3.6 viridisLite_0.3.0 yaml_2.2.0
## [7] htmltools_0.3.6 viridisLite_0.3.0 yaml_2.2.0
## [10] utf8_1.1.4 rlang_0.2.2 pillar_1.3.0
## [13] glue_1.3.0 withr_2.1.2 bindr_0.1.1
## [16] plyr_1.8.4 munsell_0.5.0 gtable_0.2.0
## [19] cellranger_1.1.0 rvest_0.3.2 evaluate_0.11
## [22] labeling_0.3 fansi_0.3.0 highr_0.7
## [25] Rcpp_0.12.18 scales_1.0.0 backports_1.1.2
## [28] hms_0.4.2 digest_0.6.15 stringi_1.2.4
## [31] dplyr_0.7.6 grid_3.5.1 rprojroot_1.3-2
## [34] cli_1.0.0 tools_3.5.1 magrittr_1.5
## [40] tidyr_0.8.1 pkgconfig_2.0.2 xml2_1.2.0
## [43] prettyunits 1.0.2 assertthat 0.2.0 httr 1.3.1
## [43] prettyunits_1.0.2 assertthat_0.2.0 httr_1.3.1
## [46] rstudioapi_0.7 R6_2.2.2 compiler_3.5.1
```

References

Allaire, JJ, Yihui Xie, Jonathan McPherson, Javier Luraschi, Kevin Ushey, Aron Atkins, Hadley Wickham, Joe Cheng, and Winston Chang. 2018. *Rmarkdown: Dynamic Documents for R*. https://CRAN.R-project.org/package=rmarkdown (https://CRAN.R-project.org/package=rmarkdown).

Anderson, Ben, and David Eyers. 2018. *GREENGridData: Processing Nz Green Grid Project Data to Create a 'Safe' Version for Data Archiving and Re-Use*. https://github.com/CfSOtago/GREENGridData (https://github.com/CfSOtago/GREENGridData).

Csárdi, Gábor, and Rich FitzJohn. 2016. *Progress: Terminal Progress Bars*. https://CRAN.R-project.org/package=progress (https://CRAN.R-project.org/package=progress).

Dowle, M, A Srinivasan, T Short, S Lianoglou with contributions from R Saporta, and E Antonyan. 2015. *Data.table: Extension of Data.frame*. https://CRAN.R-project.org/package=data.table (https://CRAN.R-project.org /package=data.table).

Grolemund, Garrett, and Hadley Wickham. 2011. "Dates and Times Made Easy with lubridate." *Journal of Statistical Software* 40 (3): 1–25. http://www.jstatsoft.org/v40/i03/ (http://www.jstatsoft.org/v40/i03/).

Müller, Kirill. 2018. Hms: Pretty Time of Day. https://CRAN.R-project.org/package=hms (https://CRAN.R-project.org

/package=hms).

R Core Team. 2016. *R: A Language and Environment for Statistical Computing*. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/ (https://www.R-project.org/).

Stephenson, Janet, Rebecca Ford, Nirmal-Kumar Nair, Neville Watson, Alan Wood, and Allan Miller. 2017. "Smart Grid Research in New Zealand–A Review from the GREEN Grid Research Programme." *Renewable and Sustainable Energy Reviews* 82 (1): 1636–45. https://doi.org/10.1016/j.rser.2017.07.010 (https://doi.org/10.1016/j.rser.2017.07.010).

Wickham, Hadley. 2007. "Reshaping Data with the reshape Package." *Journal of Statistical Software* 21 (12): 1–20. http://www.jstatsoft.org/v21/i12/ (http://www.jstatsoft.org/v21/i12/).

----. 2009. *Ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New York. http://ggplot2.org (http://ggplot2.org).

----. 2016. *Stringr: Simple, Consistent Wrappers for Common String Operations*. https://CRAN.R-project.org/package=stringr).

Wickham, Hadley, and Jennifer Bryan. 2017. *Readxl: Read Excel Files*. https://CRAN.R-project.org/package=readxl (https://CRAN.R-project.org/package=readxl).

Wickham, Hadley, and Romain Francois. 2016. *Dplyr: A Grammar of Data Manipulation*. https://CRAN.R-project.org/package=dplyr(https://CRAN.R-project.org/package=dplyr).

Wickham, Hadley, Jim Hester, and Romain Francois. 2016. *Readr: Read Tabular Data*. https://CRAN.R-project.org/package=readr).

Xie, Yihui. 2016a. *Bookdown: Authoring Books and Technical Documents with R Markdown*. Boca Raton, Florida: Chapman; Hall/CRC. https://github.com/rstudio/bookdown (https://github.com/rstudio/bookdown).

----. 2016b. *Knitr: A General-Purpose Package for Dynamic Report Generation in R*. https://CRAN.R-project.org/package=knitr (https://CRAN.R-project.org/package=knitr).

Zhu, Hao. 2018. *KableExtra: Construct Complex Table with 'Kable' and Pipe Syntax*. https://CRAN.R-project.org/package=kableExtra (https://CRAN.R-project.org/package=kableExtra).