Project Report II

BETP 2014 Household Survey:

Findings

CONTENTS

Report Summary 4
Section 1 - General Descriptive Statistics 7

1. Engagement 7
2. Gender 9
3. Age distribution 9
4. Residency: North, South or Middle of the Purbeck Ridge 11
5. Responses to the word 'tranquillity' 12
6. Features which are considered to make an area more tranquil. 12
7. Features which are considered to make an area more tranquil - 'other comments' 13
8 Features which least represent the idea of tranquillity 14
9 Features which are considered to least represent ideas of tranquillity - 'other comments' 15
Section 2 - Associations within the Data 17
8. Engagement and Disengagement. 18
1.1 Engagement/Disengagement and Gender 18
1.2 Engagement/Disengagement and Age 19
1.3 Engagement/Disengagement and residency to the north, the south or middle of the Purbeck Ridge 20
1.4 Engagement and features that are considered to make an area more tranquil 21
1.5 Engagement and features that are considered to least represent ideas of tranquillity 22
9. Gender 24
2.1 Gender and Engagement/Disengagement 24
2.2 Gender and Age 24
2.3 Gender and residency to the north, south or middle of the Purbeck Ridge 25
2.4 Gender and features that are considered to make an area more tranquil 26
2.5 Gender and features that are considered to least represent ideas of tranquillity 28
3 Age 30
3.1 Age and Engagement/Disengagement 30
3.2 Age and Gender 30
3.3 Age and resident to the north, south and middle of the Purbeck Ridge 31
3.4 Age and features that are considered to make an area more tranquil 32
3.5 Age and features that are considered to least represent ideas of tranquillity 33
4 Residency to the north, south and middle of the Purbeck Ridge 35
4.1 Residency to the north, south and middle of the Purbeck Ridge and engagement / disengagement35
4.2 Residency to the north, south and middle of the Purbeck Ridge and gender 35
4.3 Residency to the north, south and middle of the Purbeck Ridge and age 35
4.4 Residency to the north, south and middle of the Purbeck Ridge and features that are considered to make an area tranquil 36
4.5 Residency to the north, south and middle of the Purbeck Ridge and features that are considered to least represent ideas of tranquillity. 36
5 Associations between two or more variables 38
List of References 39
Appendix 1 43
Appendix 2 44
Appendix 3 52
Appendix 4 63
Appendix 5 65
Appendix 6 67
Appendix 7 69
Appendix 8 72
Appendix 9 75
Appendix 10 77
Appendix 11 78
Appendix 12 81
Appendix 13 84
Appendix 14 86
Appendix 15 93
Appendix 16 97
Appendix 17 99
Appendix 18 102

Report Summary

The household questionnaire was distributed to 2,085 house-holds within the case study area: Purbeck and its surroundings. This figure represented fewer than 15% of a total sampling framework of 13,925 householders in the case study area. The number of returned and completed questionnaires totalled 457, a $22 \%{ }^{1}$ response rate. A copy of the covering letter, together with a copy of the house hold questionnaire and map sent to residents are provided as Appendix 1. The questionnaire was constructed with one open question, a series of structured questions and two opportunities were provided for respondents to add further information against an 'other' section, if they so wished. This report presents findings arising from the structured questions and views expressed under the option of 'other'. The key findings within this report are:

Section 1

The data shows that $45 \%{ }^{2}$ of the respondents to the questionnaire are classed as 'engaged' and $55 \%{ }^{3}$ are 'disengaged'. A respondent is determined to be 'engaged' when he/she has confirmed being one or more of the following in the questionnaire: a member of a society/association or group, a member of the DCC Citizen Panel or is involved in a public consultation or survey in relation to planning in the area in the last 12 months (refer to Table 1 on page 7).

There was a relatively even balance between female $\left(51 \%^{4}\right)$ and male $\left(49 \% 0^{5}\right)$ respondents. Approximately half of the respondents $\left(50 \% \%^{\circ}\right)$ are aged $66-76+$ and only a small number of respondents $\left.(7 \%)^{7}\right)$ are aged between 18-45 years (refer to Tables 3 and 4 pp. 9 and 10).

The respondents were asked to indicate from a list of five different features which they consider make an area more tranquil and from a further list of five features, those which least represent their idea of tranquillity ${ }^{8}$. A total of 3,314 views were collated ${ }^{9}$. The data collated from the completed questionnaires shows that $88 \%{ }^{10}$ of respondents consider 'natural environment and sounds' make an area more tranquil with

[^0]74% of respondents indicating that 'noise pollution (man-made)' least represents or detracts from their idea of tranquillity (refer to Tables 6 and 8 pp .12 and 15).

In addition, respondents were given the opportunity to provide brief details of 'other' features that either make an area more tranquil or least represents/detracts from their idea of tranquillity. The views expressed were classified in line with categories and themes created for the qualitative data obtained during the participatory action consultation events (PAC) where initial scoping of the data obtained from these events resulted in the first layer of categorisation of views expressed by participants into four broad topics. These topics were classed as 'categories' and comprise of views associated with 'bumans', 'natural' environments, 'buman and natural' attributes and 'places'. From this analysis, a further nineteen 'themes' emerged from the data and views expressed by participants were further coded according to these themes and a final layer identified of subthemes (refer to Project Report I pp. 20 \& 24). Resulting from analysis of responses to the household questionnaire, the most frequently occurring categories for these 'other' features were 'natural attributes - tranquil' and 'buman attributes - non-tranquil', and the most frequently occurring theme in the former is 'natural environment' and with the latter, 'mankind' (refer to Tables 7 and 9 pp .14 and 16).

Section 2

The analysis in this section seeks to determine whether any significant associations exist within the data obtained from the questionnaires.

The data shows that there are no significant associations in the data between the following:

- Engagement/Disengagement and gender
- Engagement/Disengagement and age
- Engagement/Disengagement and whether the respondents reside to the north, the south or in the middle of the Purbeck Ridge
- Engagement/Disengagement and any of the features provided on the questionnaire which are considered to make an area more tranquil.
- Gender and whether the respondents reside to the north, south or in the middle of the Purbeck Ridge
- Age and whether the respondents reside to the north, south or in the middle of the Purbeck Ridge
- Residency to the north, south or middle of the Purbeck Ridge and any of the features provided on the questionnaire which are considered to make an area more tranquil.

The data does, however, suggest significant associations within the data between the following:

- Engagement/Disengagement and whether the feature 'noise pollution (man-made)' is considered to least represent ideas of tranquillity
- Gender and age
- Gender and whether the feature 'see coastline and hear sea' where this feature is considered to make an area more tranquil
- Gender and whether the feature 'seaside noise' where this feature is considered to least represent ideas of tranquillity
- Age and whether the features, 'natural environment and sounds', 'large open spaces' and 'few people' where these features are considered to make an area more tranquil
- Age and the feature 'noise pollution (man-made)' where this feature is considered to least represent ideas of tranquillity.
- Residency to the north, south or middle of the Purbeck Ridge and the feature 'boliday season and feeling of being overcrowded' where this feature is considered to least represent ideas of tranquillity.

Further analysis of the data was intended, using loglinear analysis, to explore whether relationships between more than two categorical variables exist within the questionnaire responses, for example, engagement, gender and features that are considered to make an area more tranquil. However, no significant associations within the data result.

Section 1 - General Descriptive Statistics

With the aim of the surveys to '...essentially...fact-find...and describe...'11 initially, frequency analyses were calculated from the SPSS database to screen, summarise and describe the data ${ }^{12}$. Results are presented in frequency tables on whether respondents are classed as 'engaged' or 'disengaged' in decision-making processes, their gender, their age ranges, residency, and features reported on what is considered to enhance or detract from tranquility. All results are shown in percentage values, due to the advantages foreseen of using percentages to show the distribution of responses.

The data presented is based on 457 house hold questionnaires ($<22 \%$ response rate). The questionnaire is provided as Appendix 1.

1. Engagement

Table 1 below shows there were 456 responses to questions 1 to 3 of the questionnaire ${ }^{13}$, of which $252\left(55 \%{ }^{14}\right)$ were identified as being 'disengaged' and $204\left(45 \%{ }^{15}\right)$ were identified as being 'engaged'.

In terms of level of engagement, of the 204 'engaged' respondents:

- $139\left(68 \%{ }^{16}\right)$ are members of a society/association or group in the area
- $24\left(12 \%{ }^{17}\right)$ are a member of the Dorset County Council Citizen Panel
- $118\left(58 \% 0^{18}\right)$ have been involved in at least one public consultation or a survey in relation to planning in the area in the last 12 months.

Table 1: Disengaged and Engaged Participants

Engaged/Disengaged					
	Disengaged	Frequency	Valid $\%$		
	Engaged	252	55.3		
	Total	204	44.7		

A respondent is determined to be 'engaged' when he/she has confirmed being one or more of the following criteria in the questionnaire:

[^1]a) A member of a society/association or group
b) A member of the DCC Citizen Panel
c) Involved in public consultation or survey in relation to planning in the area in the last 12 months ${ }^{19}$.

Of those classed as 'engaged', $132\left(65 \%{ }^{20}\right)$ of these respondents indicate that they would be happy to be contacted further by the research team in relation to this project. A further $95\left(38 \% 0^{21}\right)$ of the 'disengaged' indicate that they would be happy to be approached. ${ }^{22}$

Table 2: Permission to contact - Disengaged and Engaged Participants

	Frequency	Valid $\%$	Cumulative $\%$	
Disengaged and contactable	95	20.8	20.8	
	Disengaged and non-contactable	157	34.4	55.3
	Engaged and contactable	132	28.9	84.2
	Engaged and non-contactable	72	15.8	100.0
	Total	456	100.0	

Fig 1
Engagement and Contact

[^2]
2. Gender

Question 5 of the questionnaire asked respondents to indicate their gender. There were 453 responses to this question ${ }^{23}$. Of these responses, the data shows that, $230\left(51 \% 0^{24}\right)$ of respondents were female and $223\left(49 \%{ }^{25}\right)$ were male.

Table 3: Respondents and Gender

		Frequency	Valid \%
	Female	230	50.8
	Male	223	49.2
	Total	453	100.0

Fig. 2

These results reflect the mid-year population estimates for 2013 for the Dorset area in relation to gender supported by the Office for National Statistics (ONS) ${ }^{26}$, (ONS, 2014) where estimates showed that $51 \%{ }^{27}$ of the population was female and $49 \%{ }^{28}$ was male.

3. Age distribution

Question 4 of the questionnaire asked the respondents to indicate their age according to the age groups listed on the questionnaire (Table 4) There were 452 responses to this question ${ }^{29}$, of these $228\left(50 \% 0^{30}\right)$ respondents were within the $66+$ age bracket (see Fig. 3), with only 33 respondents $\left(7 \% 0^{31}\right)$ in the 18-45 age range.

[^3]Table 4: Age of participant
Age of participant

		Frequency		Valid $\%$
Cumulative $\%$				
	$18-25$	3	.7	.7
	$26-35$	12	2.7	3.3
	$36-45$	18	4.0	7.3
	$46-55$	67	14.8	22.1
	$56-65$	124	27.4	49.6
	$66-75$	123	27.2	76.8
	$76+$	105	23.2	100.0
		452	100.0	

Fig. 3

4. Residency: North, South or Middle of the Purbeck Ridge

Respondents were asked to confirm the village/town where they lived. Their responses were then categorised according to whether they lived to the north, the south or in the middle of the Purbeck Ridge. This categorisation was based on geographical map location along and within the Purbeck Ridge.
From a total of 398 responses ${ }^{32}, 55 \%{ }^{33}$ respondents reside to the south of the Purbeck Ridge, $38 \% 0^{34}$ reside to the north and $8 \%{ }^{35}$ reside in the middle of the Purbeck Ridge.

Table 5: Respondents residential location according to north, south or on the Purbeck Ridge

		Frequency	Valid $\%$	Cumulative $\%$
Valid	North	150	37.7	37.7
	South	216	54.3	92
	Middle	32	8	100
	Total	398	100.0	

Fig. 4

Whilst a stratified sampling framework was created in GIS, from which a random selection of households was produced, it is unsurprising that responses were greater from the south than the north of the Ridge (55% in the former and 38% in the latter case): given the greater population density in Swanage.

[^4]
5. Responses to the word 'tranquillity'

Question 6 was designed in an open format through which respondents were asked, 'what comes to mind when you hear the word 'tranquillity'? (Appendix 1). The responses were qualitatively analysed and coded in line with the categories and themes that had been previously been generated from the qualitative data captured at the PAC \& Resident events. As such, reporting in full on this question is provided in Project Report I, Section 4.

6. Features which are considered to make an area more tranquil

In question 7c (Appendix 1) respondents were provided with a list of five features (as detailed below) all of which derived from the top views presented by participants at the PAC events previously held. From these, respondents were asked to indicate which features they considered made an area more tranquil. Given the notion of tranquillity is highly subjective respondents were also given the opportunity to provide details of 'other' features they considered made an area more tranquil. Responses for 'other' features are detailed in Appendix 2.

A total of 1,726 views on tranquillity were collated (Table 6) and the feature which received the highest number of responses to this question was 'Natural environment and sounds' with a total of 403 $\left(88 \%{ }^{36}\right)$ respondents highlighting this feature.

Table 6: Tranquil themes selected by respondents in order of popularity

Feature:	Frequency of responses (agreed)	\% of respondents ticked feature (agreed):
Natural environment and sounds	403	$88.2^{2} \%$
Large Open Spaces	347	75.9%
Few People	325	71.1%
See coastline and hear sea	302	66.1%
In keeping with Purbeck landscape	261	57.1%
Other*	88	19.3%
Total	1726^{37}	

Fig. 5

[^5]

At the Resident event (05 July 2014), in which 18household respondents participated, the top most important features for tranquillity are related to 'absence of mankind (noise, traffic, infrastructure and industry)'; 'and 'natural environment and open spaces' (Appendix 2 Project Report I) .
7. Features which are considered to make an area more tranquil - 'other comments'

Where respondents indicated 'other' in Question 7c, they were asked to provide a description of what this feature would include. On analysis, it was evident that the same themes identified in the qualitative analyses were apparent barring participants' responses on the subject of 'time' (refer to Project Report I Appendix I) were not evident in householder responses. These are detailed below.

Categories	Themes
Human	Activity, Auditory, Behaviour, Coastal, Cognitive, Mankind, Natural
Natural	Environment, Rural Environment, Seasons, Sight, Smell, Space, Spiritual, State of Mind, Touch, Water, Weather and Wildlife.
Human and Natural	
Places	

There were 88 respondents who ticked 'other', of which 82 provided comments that were categorised and together with frequencies, are indicated in Table 7 below. The most frequently occurring category is 'natural attributes - tranquil' and the most commonly occurring theme is 'mankind with 47 occurrences. Please see Appendix 2 for full details of comments and categorisation.

Table 7: 'Other' themes provided by respondents in order of popularity - tranquil

Themes	Human Attributes -Tranquil	Natural Attributes - Tranquil	 Natural - Tranquil	Places - Tranquil	Total	Human Attributes - Non Tranquil
Mankind	41	5	1	0	$\mathbf{4 7}$	4
Natural Environment	0	27	1	1	$\mathbf{2 9}$	0
Cognitive	12	12	0	0	$\mathbf{2 4}$	3
Auditory	13	6	0	0	$\mathbf{1 9}$	1
Sight	4	8	1	0	$\mathbf{1 3}$	0
Coastal	2	7	0	1	$\mathbf{1 0}$	0
Rural Environment	0	8	0	0	$\mathbf{8}$	1
Wildlife	0	9	0	0	$\mathbf{9}$	0
Activity	5	2	0	0	$\mathbf{7}$	0
Water	0	5	0	0	$\mathbf{5}$	0
Space	0	4	1	0	$\mathbf{5}$	0
Seasons	1	1	0	0	$\mathbf{2}$	1
Smell	0	1	0	0	$\mathbf{1}$	0
State of Mind	1	0	0	0	$\mathbf{1}$	0
Behaviour	1	0	0	0	$\mathbf{1}$	1
Spirituality	0	0	0	0	$\mathbf{0}$	0
Touch	0	0	0	0	$\mathbf{0}$	0
Weather	0	0	0	0	$\mathbf{0}$	0
Total	80	95	4	2	181	11

8 Features which least represent the idea of tranquillity

In Question 8c, respondents were asked to indicate with a 'tick' those features (from a list of five features ${ }^{38}$ provided in Table 8) those which least represent their idea of tranquillity. Table 8 shows that a total of 1,588 views were collated. 'Noise pollution' ranked highest (74% of respondents) (NB. 6 comments were not categorised - these responses included, for example, 'you got the lot', 'as above' and 'all these detract from tranquillity').

[^6]
Table 8

Feature:	Frequency of responses (agreed)	\% of respondents ticked feature:
Noise pollution (man-made)	338	74%
Holiday season and feeling of being overcrowded	310	67.8%
Man-made infrastructure and built up areas	307	67.3%
Seaside noise	270	59.2%
Litter and fly tipping	261	57.1%
Other*	102	22.3%
Total	158839	

Fig. 6

At the Resident event (05 July 2014), in which 18 Household respondents participated, related to the top features considered to detract from tranquillity are 'noise (buman, traffic and industry)'; 'man-made structures (residential and commercial)'; 'traffic', lots of people' and 'something out of context' (Appendix Two Project Report I).

9 Features which are considered to least represent ideas of tranquillity - 'other comments'

Where respondents indicated 'other' in Question 8c, they were asked to provide a description of what 'other' would include. On analysis, it was evident that the same themes identified in the qualitative analysis were apparent. These responses were classified in line with the categories and themes created from the qualitative analyses and the frequencies were totalled.

[^7]Categories and themes established within the qualitative data:

Attributes	Themes
Human	Activity, Auditory, Behaviour, Coastal, Cognitive, Mankind, Natural Environment, Rural Environment, Seasons, Sight, Smell, Space, Spiritual, State of Mind, Touch, Water, Weather and Wildlife.
Hatural	
Haman and Natural	
Places	

There were 102 respondents who ticked 'other', of which 96 comments were categorised and frequencies indicated in Table 9 below. The most frequently occurring theme in the 'other' category is 'mankind' with 88 occurrences. Respondents' comments included 'high population and housing density', 'aircraft noise, heavy industrial transport noise, gunfire', and 'wind farms'. (Refer to Appendix 3 for full details of comments and their categorisation).

Table 9: Other' themes provided by respondents in order of popularity- non tranquil

Themes	Human Attributes - Non- Tranquil	Natural Attributes - Non- Tranquil	Human Natural -Non- Tranquil	Places - Non- Tranquil	Total	Muman Attributes - Tranquil	Natural Attributes - Tranquil
Mankind	76	0	2	10	$\mathbf{8 8}$	2	
Cognitive	30	0	1	3	$\mathbf{3 4}$	2	3
Behaviour	21	0	0	3	$\mathbf{2 4}$	0	3
Auditory	20	0	1	1	$\mathbf{2 2}$	1	1
Activity	7	0	0	4	$\mathbf{1 1}$	0	0
Seasons	5	0	1	5	$\mathbf{1 1}$	0	0
Sight	6	0	1	1	$\mathbf{8}$	0	2
Natural Environment	2	1	1	0	$\mathbf{4}$	0	2
Coastal	1	0	0	1	$\mathbf{2}$	0	0
State of Mind	3	0	0	0	$\mathbf{3}$	0	1
Rural Environment	3	0	0	0	$\mathbf{3}$	0	0
Weather	1	0	0	1	$\mathbf{2}$	0	0
Wildlife	1	0	0	0	$\mathbf{1}$	0	0
Smell	0	0	0	$\mathbf{0}$	0	0	
Space	0	0	0	0	$\mathbf{0}$	0	0
Spirituality	0	0	0	$\mathbf{0}$	0	0	
Touch	0	0	0	$\mathbf{0}$	0	0	
Water	0	0	0	$\mathbf{0}$	0	0	
Total	0	0	29	213	5	0	

Section 2 - Associations within the Data

With an aim of identifying whether there are associations within the house hold questionnaire data in relation to responses from respondents in the following areas; engagement, gender, age and whether respondents live north or south of the Purbeck Ridge, a number of inferential statistics were conducted.

Pearson's Chi Square tests for interdependence were used in the analysis of this data as this examines the relationship between two categorical variables and results are presented in the form of contingency tables (Refer to Appendices 4 to 8). Where there are two categories in each variable, for example, engagement and gender, the Yates Correction for Continuity value was used as this compensates for any over-estimate of the Chi Square value.

Dependent on the results of the Chi Square tests, further tests, using loglinear analysis, were planned to explore whether relationships between more than two categorical variables existed within the questionnaire responses: thus, for example, engagement, gender and features that are considered to make an area more tranquil.

The following significant associations were found within the data:

- Engagement/Disengagement and whether the feature 'noise pollution (man-made)' is considered to least represent ideas of tranquillity (section 1.5)
- Gender and age (section 2.2)
- Gender and whether the feature 'see coastline and hear sea' where this feature is considered to make an area more tranquil (section 2.4)
- Gender and whether the feature 'seaside noise' where this feature is considered to least represent ideas of tranquillity (section 2.5)
- Age and whether the features, 'natural environment and sounds', 'large open spaces' and 'few people' where these features are considered to make an area more tranquil (section 3.4)
- Age and the feature 'noise pollution (man-made)' where this feature is considered to least represent ideas of tranquillity (section 3.5)
- Residency to the north, south or middle of the Purbeck Ridge and the feature 'holiday season and feeling of being overcrow ded' where this feature is considered to least represent ideas of tranquillity (section 4.5)

1. Engagement and Disengagement

An objective of the project required identifying the views of the so called 'hard to reach' or 'disengaged' members of society in the case study area. An 'engaged' respondent is one who is either a member of a society/association or group, a member of the DCC Citizen Panel or has been involved in public consultation or survey in relation to planning in the area in the last 12 months.

There were no significant associations found within the data between engagement/disengagement and gender, age, residency in relation to the Purbeck Ridge and any of the tranquil features provided on the questionnaire. Analysis of the data does indicate however a significant association between 'engagement/disengagement' and whether the feature 'noise pollution (man-made)' is considered to least represent ideas of tranquillity (see section 1.5 on page 22).

1.1 Engagement/Disengagement and Gender

Research question: Is there an association between whether a respondent is engaged or disengaged and their gender?

The results show that in total $202\left(45 \%{ }^{40}\right)$ respondents are engaged, of which $101(50 \%)$ are female $101(50 \%)$ are male. The remaining 250 respondents are disengaged, of which $129\left(52 \% 0^{41}\right)$ are female and $121\left(48 \% 0^{42}\right)$ are male.

The Pearson's Chi Square test for independence, using Yates Continuity Correction value, indicates that there is no statistically significant difference in the pattern of responses between whether a respondent is engaged or disengaged and their gender within this data. Therefore there is no significant association between whether a respondent is engaged or disengaged and their gender $\left(x^{2}(1)=.06, p<.81\right)$. (Refer to Appendix 4.)

[^8]Fig 7

1.2 Engagement/Disengagement and Age

Research Question: Is there an association between whether a respondent is engaged or disengaged and age?

The results show that there are more disengaged, than engaged respondents in all age groups with the exception of the $18-25$ age range. However, it is important to highlight that there were only three respondents in this age range. The largest differences in whether respondents are engaged or disengaged within the age groups are evident in the age range 26-35 ($n=12$) where 9 respondents (75%) in this age range are disengaged; and in the age range $36-45(n=18)$ where 13 respondents $\left(72 \%{ }^{43}\right)$ in this age range are disengaged (see Appendix 5 - ${ }^{\kappa} \%$ within age of participant'). However, it should be noted that there were only a small number of respondents in these age ranges.

The Pearson's Chi Square test indicates that there is no statistically significant difference in the pattern of responses between whether a respondent is engaged or disengaged and age. Therefore no significant association exists between whether a respondent is engaged or disengaged and age $\left(x^{2}(1)=5.74, p<.48\right) .($ Refer to Appendix 5).

[^9]Fig 8

1.3 Engagement/Disengagement and residency to the north, the south or middle of the Purbeck Ridge

Research Question: Is there an association between whether a respondent is engaged or disengaged and whether respondents reside to the north, the south or in the middle of the Purbeck Ridge?

Results show that of the total number (215) of respondents who reside to the south of the Purbeck Ridge, 108 are engaged ($50 \% 0^{44}$ of the respondents residing to the south) and 107 are disengaged (5045% of the respondents residing to the South).

A total number of 150 respondents reside to the north of the Purbeck Ridge, of which 64 are engaged $\left(43 \%{ }^{46}\right.$ of the respondents residing to the north) and 86 are disengaged ($57 \%{ }^{47}$ of the respondents residing to the North).

The remaining respondents (32) reside in the middle of the Purbeck Ridge, of these 13 are engaged $\left(41 \%{ }^{48}\right)$ and 19 are disengaged $\left(59 \%{ }^{49}\right)$.

The Pearson's Chi Square test indicated that there is no statistically significant difference in the pattern of responses between engaged and disengaged respondents and whether respondents reside

[^10]to the north, the south or in the middle of the Purbeck Ridge. Therefore there is no significant association between engaged and disengaged respondents and whether respondents reside to the north, the south or in the middle of the Purbeck Ridge in this data ($\left.x^{2}(1)=2.53, p<.28\right)$. (Refer to Appendix 6).

Fig 9

1.4 Engagement and features that are considered to make an area more tranquil

Research Question: Is there an association between whether a respondent is engaged or disengaged and features that are considered to make an area more tranquil?

Respondents were asked to select one or more features that in their view most contributed to their notion of tranquillity (Question 7c Appendix 1). The data shows that 'natural environment and sounds' is the most frequently identified feature considered to make an area more tranquil ($\mathrm{n}=402^{50}$) across both the engaged and disengaged respondents.

The frequency and percentage of responses to each feature considered to make an area more tranquil is detailed below in Table 10. The responses given by engaged and disengaged respondents are shown and the results indicate whether there is any statistical difference in the pattern of responses between these variables. The Pearson's Chi Square test (using Yates Continuity Correction value), indicates that there is no statistically significant differences in the pattern of responses between whether a respondent is engaged or disengaged and whether the features are considered by

[^11]respondents to make an area more tranquil. Therefore no statistically significant associations exist between whether a respondent is engaged or disengaged and whether the features are considered by respondents to make an area more tranquil (Refer to Appendix 7)

Table 10 Responses from Engaged/Disengaged on features considered to make an area more tranquil

Feature:	Frequency and \% of respondents selection		Total:	Notes:
	Disengaged	Engaged		
Natural environment and natural sounds	$\begin{gathered} 224 \\ (55.7 \%) \end{gathered}$	$\begin{gathered} 178 \\ (44.3 \%) \end{gathered}$	402	No significant difference $\left(x^{2}(1)=.15, p<.70\right)$
Large Open Spaces	$\begin{gathered} 185 \\ (53.5 \%) \\ \hline \end{gathered}$	$\begin{gathered} 161 \\ (46.5 \%) \\ \hline \end{gathered}$	346	No significant difference $\left(x^{2}(1)=1.58, p<.21\right)$
Few People around: especially in the countryside	$\begin{gathered} 179 \\ (55.1 \%) \\ \hline \end{gathered}$	$\begin{gathered} 146 \\ (44.9 \%) \\ \hline \end{gathered}$	325	No significant difference $\left(x^{2}(1)=.00, p<.98\right)$
Being able to see coastline and hear the sound of the sea	$\begin{gathered} 174 \\ (57.8 \%) \\ \hline \end{gathered}$	$\begin{gathered} 127 \\ (42.2 \%) \end{gathered}$	301	No significant difference $\left(x^{2}(1)=2.03, p<.16\right)$
Features in keeping with the Purbeck landscape e.g. nature, villages, open space, cultural heritage.	$\begin{gathered} 146 \\ (56.2 \%) \end{gathered}$	$\begin{gathered} 114 \\ (43.8 \%) \end{gathered}$	260	No significant difference $\left(x^{2}(1)=.12, p<.73\right)$

1.5 Engagement and features that are considered to least represent ideas of tranquillity

Research Question: Is there an association between whether a respondent is engaged or disengaged and features that are considered to least represent their ideas of tranquillity?

Respondents were asked to select one or more features that in their view least represented a tranquil location or most contributed to their notion of tranquillity (Question 8c Appendix 1). The frequency and percentage of responses to each feature given by engaged and disengaged respondents is provided below in Table 11. This table also presents details of whether a significant statistical difference in the pattern of responses exists between respondents who are engaged and who are disengaged and whether they consider the feature listed to least represent their ideas of tranquillity.

The data shows that 'noise pollution (man-made)' is the most frequently identified feature considered to least represent ideas of tranquillity $(\mathrm{n}=337): 51 \%$ of the total number of respondents that indicated this feature are disengaged and 49% are engaged.

In addition, data contained within Appendix 8 shows that; of the 252 disengaged respondents, 172 $\left(68 \%{ }^{51}\right)$ identified 'noise pollution (man-made)' as a feature which least represents their idea of tranquillity; and of the 204 engaged respondents, $165\left(81 \%{ }^{52}\right)$ identified 'noise pollution (man-made)' as a feature which least represents their idea of tranquillity. Conversely, 80 disengaged respondents ($32 \%{ }^{53}$) and 39 engaged respondents $\left(19 \% 0^{54}\right)$ did not select this feature as one which they consider least represents their idea of tranquillity.

Table 11: Responses from Engaged/Disengaged on features considered to least represent ideas of tranquillity

Feature:	Frequency and \% of respondents selection		Total :	Notes:
	$\begin{gathered} \text { Disengaged } \\ (\mathrm{n}=252) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Engaged } \\ (\mathrm{n}=204) \\ \hline \end{gathered}$		
Noise pollution (man-made)	$\begin{gathered} 172 \\ (68.3 \%) \end{gathered}$	$\begin{gathered} 165 \\ (80.9 \%) \end{gathered}$	337	Statistically significant difference exists between engagement and this feature $\left(x^{2}(1)=.8 .68, p<.003, p h i=-.14\right)$
Holiday season and feeling of being overcrowded: amount of people, cars, traffic jams	$\begin{gathered} 171 \\ (67.8 \%) \end{gathered}$	$\begin{gathered} 138 \\ (67.6 \%) \end{gathered}$	309	No significant difference $\left(x^{2}(1)=.00, p<1.00\right)$
Man-made infrastructure and built up areas: e.g. industrial sites, pylons, mobile phone masts, major roads, ferries, planes.	$\begin{gathered} 164 \\ (65.1 \%) \end{gathered}$	$\begin{gathered} 142 \\ (69.6 \%) \end{gathered}$	306	No significant difference $\left(x^{2}(1)=.75, p<.39\right)$
Seaside noise: people, loud music, cars, jet skis and power boats.	$\begin{gathered} 146 \\ (57.9 \%) \end{gathered}$	$\begin{gathered} 124 \\ (60.8 \%) \end{gathered}$	270	No significant difference $\left(x^{2}(1)=.34, p<.56\right)$
Litter and fly tipping.	$\begin{gathered} 146 \\ (57.9 \%) \end{gathered}$	$\begin{gathered} 114 \\ (55.8 \%) \end{gathered}$	260	No significant difference $\left(x^{2}(1)=.12, p<.73\right)$

The Pearson's Chi Square test, using Yates Continuity Correction value, , indicates that there is a statistically significant difference in the pattern of responses between engaged and disengaged respondents in relation to whether they consider 'noise pollution (man-made)' as a feature which least represents their idea of tranquillity. Therefore it appears that there is a significant association between whether a respondent is engaged and disengaged and whether they consider 'noise pollution (man-made)' as a feature which least represents their idea of tranquillity (x^{2} (1) $=8.68, \mathrm{p}<.003$, phi $=.14$). It is to be noted, however, that the phi co-efficient value here ($\mathrm{phi}=.14$), is considered a small effect using Cohen's (1988,) criteria ${ }^{55}$, suggesting that there is not a strong association between these variables

[^12]
2. Gender

Early on in this research, an observation was made that there appeared to be more females attending the PAC events, more females responding to local advertisements and generally showing greater interest in the research, in actively engaging in the research and in demonstrating their interest in the subject of tranquillity. As such this aspect was investigated further with responses to the household questionnaire and in terms of participants agreeing to partake in onsite surveys. Analysis of the data indicates that a significant association exists between gender and age (section 2.2, page 24); gender and the feature, 'see coastline and hear sea', considered to make an area more tranquil (see section 2.4, page 26); gender and the feature, 'seaside noise', considered to detract from tranquillity (see section 2.5, page 28).

2.1 Gender and Engagement/Disengagement

Analysis of the data relating to gender and engagement are presented in section 1.1 and indicates that there is no significant association between whether a respondent is engaged or disengaged and their gender value $\left(x^{2}(1)=.06, p<.81\right)$.

2.2 Gender and Age

Research Question: Is there an association between gender of the respondents and their

> age?

The results show that there are more female respondents in the $56-65$ and $66-75$ age groups $\left(27 \% 0^{56}\right.$ and 2557% of total female respondents respectively) and there are more male respondents in the 56 -$65,66-75$ and $76+$ age groups $\left(28 \% 5^{58}, 30 \% 0^{59}\right.$ and $28 \%{ }^{60}$ respectively) than other age groups.

Of the 230 female respondents, there are only $26\left(11 \%{ }^{61}\right)$ female respondents aged between 18-45 years and of the 222 male respondents, there are only $7\left(3 \% \%^{62}\right)$ male respondents aged between 18-45 years.

The Pearson's Chi Square test indicates that there is a significant association between gender and age $\left(x^{2}(1)=20.29, p<.002, V=.21\right)$. Analysis of the results is presented in Appendix 9. The effect size (strength of association) in this case has been calculated using Cramer's V as there are more than two categories in one of the variables (i.e. age). The results indicate a small-medium effect $($ where small effect $=.01$ and medium effect $=.30)$.

[^13]Fig 10

In further dividing the age groups into those respondents who are aged between 18-55 and 56-76+, the results show that $68\left(30 \% 0^{63}\right)$ of females are aged $18-55$ with $162\left(70 \% 0^{64}\right)$ aged between $56-76+$ years; and $32\left(14 \% 0^{65}\right)$ of males are aged $18-55$ with $190\left(86 \% \%^{60}\right)$ aged between 56-76+ years.

2.3 Gender and residency to the north, south or middle of the Purbeck Ridge

Research Question: Is there an association between gender and whether respondents reside to the north, south or in the middle of the Purbeck Ridge?

Results show that of the total number (148) of respondents who reside to the north of the Purbeck Ridge, $74(50 \%)$ are female and $74(50 \%)$ are male. A total of 216 respondents reside to the south of the Purbeck Ridge, of which $105\left(49 \% 0^{67}\right)$ are female and $111\left(51 \% 0^{68}\right)$ are male. There are 32 residents who reside in the middle of the Purbeck Ridge, $18\left(56 \%{ }^{69}\right)$ are female and $14\left(44 \%{ }^{70}\right)$ are male. The number and proportion of female and male respondents who reside in each location is provided in Table 12.

[^14]Table 12: Association between gender and respondents area of residence

Gender:	North	South	Middle	Total
Female	74	105	18	197
	(37.6%)	(53.3%)	(9.1%)	(100%)
Male	74	111	14	199
Total	$147.2 \%)$	(55.8%)	(7.0%)	$390 \%)$

The Pearson's Chi Square test indicates that there is no association between gender and whether respondents reside to the north, south or in the middle of the Purbeck Ridge (x^{2} (1) =.66, $p<$.72). Further details are provided in Appendix 10.
2.4 Gender and features that are considered to make an area more tranquil

Research Question: Is there an association between gender and features that are considered to make an area more tranquil?

The data shows that whilst 'natural environment and sounds' is the most frequently identified feature considered to make an area more tranquil overall, a difference exists in the pattern of responses between male and female respondents. The most frequently identified feature considered to make an area more tranquil amongst female respondents is 'see coastline and hear sea' and amongst male respondents it is 'fens people'. The frequency and percentage of responses given by female and male respondents within each feature considered to make an area more tranquil is detailed below in Table 13, together with details of whether a significant difference in the pattern of responses exists within the genders for each of these features (last column).

Table 13: Distinctions by gender and features that are considered to make an area more tranquil

Feature:	Frequency and \% Ticked within feature		Total:	Notes:
	Female:	Male:		
Natural environment and sounds	$\begin{gathered} 206 \\ (51.2 \%) \end{gathered}$	$\begin{gathered} \hline 196 \\ (48.8 \%) \\ \hline \end{gathered}$	402	No significant difference $\left(x^{2}(1)=.17, p<068\right)$
Large Open Spaces	$\begin{gathered} 182 \\ (52.4 \%) \\ \hline \end{gathered}$	$\begin{gathered} 165 \\ (47.6 \%) \\ \hline \end{gathered}$	347	No significant difference $\left(x^{2}(1)=1.39, p<024\right)$
Few People	$\begin{gathered} 157 \\ (48.5 \%) \end{gathered}$	$\begin{gathered} 167 \\ (51.5 \%) \\ \hline \end{gathered}$	324	No significant difference $\left(x^{2}(1)=2.13, p<.14\right)$
See coastline and hear sea	$\begin{gathered} 164 \\ (54.3 \%) \end{gathered}$	$\begin{gathered} 138 \\ (45.7 \%) \end{gathered}$	302	Statistically significant association between gender and this feature $\left(x^{2}(1)=4.11, p<0.04, p h i=.10\right)$
In keeping with Purbeck landscape	$\begin{gathered} 133 \\ (51.1 \%) \end{gathered}$	$\begin{gathered} 127 \\ (48.8 \%) \end{gathered}$	260	No significant difference $\left(x^{2}(1)=.01, p<0.93\right)$

The data contained within Appendix 11 shows that; of the 230 female and 223 male respondents, $164\left(71 \% 0^{71}\right)$ and $138\left(62 \% 0^{72}\right)$ respectively identified the feature 'see coastline and bear sea' as one which they consider to make an area more tranquil. Consequently, $66\left(29 \% \%^{73}\right)$ female and $85\left(38 \% 0^{74}\right)$ male respondents did not identify the feature 'see coastline and hear sea' as aspects they consider to make an area more tranquil.

The Pearson's Chi Square test, using Yates Continuity Correction value, indicates that there is a statistically significant difference in the pattern of responses between male and female respondents in relation to whether they consider the feature 'see coastline and hear sea' to make an area more tranquil. Therefore it appears that there is an association between gender and whether they consider 'see coastline and hear sea' as a feature to be make an area more tranquil ($x^{2}(1)=4.11, p<.04$, phi $=.10$,). Note however that the phi co-efficient value here shows a small effect, using Cohen's (1988), criteria ${ }^{75}$, indicating that there is not a strong association. Further details are provided in Appendix
11.

[^15]
2.5 Gender and features that are considered to least represent ideas of tranquillity

Research Question: Is there an association between gender and features that are considered to

 least represent ideas of tranquillity?The frequency and percentage of responses to each feature that is considered to least represent ideas of tranquillity given by female and male respondents is provided in Table 14. These are reported together with details of whether a significant difference in the pattern of responses exists between the genders and whether they consider the feature listed to least represent their ideas of tranquillity. In general, the results do not indicate a significant difference in the pattern of responses given by female and male respondents.

Table 14 Distinctions by gender and features that are considered to make an area least tranquil

Feature:	Frequency and \% Ticked		Total:	Notes:
	Female:	Male:		
Noise pollution (man-made)	$\begin{gathered} 172 \\ (50.9 \%) \\ \hline \end{gathered}$	$\begin{gathered} 166 \\ (49.1 \%) \\ \hline \end{gathered}$	338	No significant difference $\left(x^{2}(1)=.00, p<1.00\right)$
Holiday season and feeling of being overcrowded	$\begin{gathered} 159 \\ (51.3 \%) \\ \hline \end{gathered}$	$\begin{gathered} 151 \\ (48.7 \%) \\ \hline \end{gathered}$	310	No significant difference $\left(x^{2}(1)=.05, p<.82\right)$
Man-made infrastructure and built up areas	$\begin{gathered} 160 \\ (52.3 \%) \\ \hline \end{gathered}$	$\begin{gathered} 146 \\ (47.7 \%) \\ \hline \end{gathered}$	306	No significant difference $\left(x^{2}(1)=.81, p<.37\right)$
Seaside noise	$\begin{gathered} 126 \\ (46.8 \%) \end{gathered}$	$\begin{gathered} 143 \\ (53.2 \%) \end{gathered}$	269	Statistically significant association between gender and this feature $\begin{gathered} \left(x^{2}(1)=3.60, p<.05, p h i=-\right. \\ .10,) \end{gathered}$
Litter and fly tipping	$\begin{gathered} 141 \\ (54 \%) \end{gathered}$	$\begin{gathered} 120 \\ (46 \%) \end{gathered}$	261	No significant difference $\left(x^{2}(1)=2.30, p<.13\right)$

However, of the 230 female respondents, $126\left(55 \%{ }^{76}\right)$ identified 'seaside noise' as a feature they consider to least represent their ideas of tranquillity whilst $104\left(45 \% 0^{77}\right)$ female respondents did not select this feature. Of the 222 male respondents, $143\left(64 \%{ }^{78}\right)$ identified 'seaside noise' as a feature they consider to least represent their ideas of tranquillity whilst $79\left(36 \%{ }^{79}\right)$ male respondents did not select this feature. There is no significant difference between any three way analyses on any of the data.

[^16]The Pearson's Chi Square test, using Yates Continuity Correction value, indicates that there is a statistically significant difference in the pattern of responses between male and female respondents in relation to whether they consider the feature 'seaside noise' to least represent their ideas of tranquillity. Therefore it appears that there is an association between the male and female respondents and whether they consider 'seaside noise' as a feature which least represents their idea of tranquillity $\left(x^{2}(1)=3.60, p<.05, p h i=-.10\right.$,). Note however that the phi co-efficient value here shows a small effect, using Cohen's (Pallant, 2010) criteria ${ }^{80}$, indicating that there is not a strong association. Further details are provided in Appendix 12.

[^17]
3 Age

In terms of the engagement/disengagement of citizens in making decisions as to their area or specific interests, previous research ${ }^{81}$ shows that engagement tends to be associated with age ranges: the young worldwide are particularly identified as the estranged members of a community (Crowhurst 2015; Manning 2009: Mason 2013). Analysis of the data from the questionnaire indicates that, whilst there are no significant associations between age and gender in terms of their patterns of responses to questions, there are significant associations between age and features of 'natural environment and sounds', 'large open spaces' and 'few people' which are considered to make an area more tranquil (see section 3.4 below on page 32). In addition the data indicates that there is association between age and the feature 'noise pollution' where this is considered to least represent ideas of tranquillity (see section 3.5 below).

3.1 Age and Engagement/Disengagement

Analysis of the data relating to gender and engagement is presented in section 1.2 and indicates that there is no significant association between whether a respondent is engaged or disengaged and age $\left(x^{2}(1)=5.74, p<.48\right)$.

3.2 Age and Gender

Analysis of the data relating to age and gender is presented in section 2.2 and indicates that there is a significant association between age and gender $\left(x^{2}(1)=20.29, p<.002, V=.21\right)$. Analysis of the results is presented in Appendix 9. The effect size (strength of association) in this case has been calculated using Cramer's V as there are more than two categories in one of the variables (i.e. age). The results indicate a small-medium effect (where small effect $=.01$ and medium effect $=.30$).

[^18]Table 15 Analysis of Gender and Age of Respondents

3.3 Age and resident to the north, south and middle of the Purbeck Ridge

Research Question: Is there an association between age and whether respondents reside to the north, south or in the middle of the Purbeck Ridge?

Table 16 below shows the age distribution (by percentage) of respondents residing to the North and South, and in the middle of the Purbeck Ridge. The Pearson's Chi Square test indicates that there are no statistically significant differences in the data between respondents across the age groups and whether they reside to the north, south or in the middle of the Purbeck Ridge. Therefore there is no significant association between age and whether respondents reside to the north, south or in the middle of the Purbeck Ridge $\left(x^{2}(1)=3.44, p<.99\right)$. The results are presented in Appendix 13.

Table 16: Age and respondents location of residence

Age group:	18-25	26-35	$\mathbf{3 6 - 4 5}$	$\mathbf{4 6 - 5 5}$	$\mathbf{5 6 - 6 5}$	$\mathbf{6 6 - 7 5}$	$\mathbf{7 6 +}$	Total $\%$
\% within age group living to North $(n=149)$	0.7%	2.7%	4.7%	14.2%	27.7%	27%	23%	100%
\% within age group living to South $(n=219)$	0.5%	1.4%	3.7%	12.6%	28.4%	30.2%	23.3%	100%
$\%$ within age group living in middle $(n=27)$	0%	3.1%	0%	15.6%	28.1%	28.1%	25%	100%

3.4 Age and features that are considered to make an area more tranquil

Research question: Is there an association between age of respondents and features that are

 considered to make an area more tranquil?The Pearson Chi Square test (see Appendix 14) indicates that there are significant differences in patterns of responses across the age groups within the following features provided in the questionnaire, as detailed in Table 17:

- Natural environment and sounds $\left(x^{2}(1)=13.81, p<.03, V=.18\right)$.
- Large Open Spaces $\left(x^{2}(1)=16.76, p<.01, V=.19\right)$.
- Few People ($\left.x^{2}(1)=15.43, p<.02, V=.19\right)$.

It is noted that a Cramer V value of .01 indicates a small effect and a .30 value indicates a medium effect, using Cohen's (1988) criteria, which suggests that this is not a strong association.

Table 17 below shows the number and percentage of respondents (according to age group) that identified these features as those which they consider make an area more tranquil.

Table 17 Features that are considered to make an area more tranquil according to age group

Feature/Age group:	$\mathbf{1 8 - 2 5}$	$\mathbf{2 6 - 3 5}$	$\mathbf{3 6 - 4 5}$	$\mathbf{4 6 - 5 5}$	$\mathbf{5 6 - 6 5}$	$\mathbf{6 6 - 7 5}$	$\mathbf{7 6 +}$	Total
Natural environment and	2	12	18	63	112	109	85	401
sounds	0.5%	3.0%	4.5%	15.7%	27.9%	27.2%	21.2%	100%
Large Open Spaces	0	11	14	50	102	96	73	346
	0%	3.2%	4.0%	14.5%	29.5%	27.7%	21.1%	100%
Few People	0	8	16	44	86	97	72	323
	0%	2.5%	5%	13.6%	26.6%	30%	22.3%	100%

The number and percentage of respondents from within each age group that identified these features as enhancing tranquillity in an area are shown below in Table 18. The significant differences are highlighted across the age groups between those who identified these features and those who did not identify these features as making an area more tranquil. For example, all respondents in the age groups 26-35 and 36-45 consider 'natural environment and sounds' make an area more tranquil.

Table 18 Features that are considered to make an area more tranquil within each age group

Feature/Age group:	$\mathbf{1 8 - 2 5}$	$\mathbf{2 6 - 3 5}$	$\mathbf{3 6 - 4 5}$	$\mathbf{4 6 - 5 5}$	$\mathbf{5 6 - 6 5}$	$\mathbf{6 6 - 7 5}$	$\mathbf{7 6 +}$	Total
Natural environment and sounds	2	12	18	63	112	109	85	401
Large Open Spaces	66.7%	100%	100%	94%	90.3%	88.6%	81%	
Few People	0	11	14	50	102	96	73	346
	0	91.7%	77.8%	74.6%	82.3%	78%	69.5%	
8	16	44	86	97	72	323		
	0%	66.7%	88.9%	65.7%	69.4%	78.9%	68.6%	100%

However, there are no significant differences in the patterns of responses across the age groups for the following features provided in the questionnaire:

- In keeping with Purbeck Landscape $\left(x^{2}(1)=4.07, p<.67\right)$.
- See coastline and hear sea $\left(x^{2}(1)=10.81, p<.09\right)$.

Thus views are not able to be distinguished according to age.
3.5 Age and features that are considered to least represent ideas of tranquillity

Research question: Is there an association between age and the features that are considered

 to least represent ideas of tranquillity?The Pearson Chi Square test (see Appendix 15) indicates that there are significant differences in patterns of responses across the age groups for the following feature provided in the questionnaire,:

- Noise pollution (man-made) $\left(x^{2}(1)=18.21, p<.01, V=.20\right)$.

It is noted that a Cramer V value of .01 indicates a small effect and a .30 value indicates a medium effect, using Cohen's (1988) criteria, which suggests that whilst there is an association, it is not strong.

Table 19 below shows the number and percentage of respondents (according to age group) that identified this feature as one which they consider least represents their idea of tranquillity and the number and percentage of respondents from within each age group.

This highlights the significant differences across the age groups between those who identified this feature and those who did not identify this feature as least representing their idea of tranquillity. For example, $92 \% 0^{82}$ of respondents in the age group 26-35 consider 'noise pollution (man-made) to least represent their ideas of tranquillity (although it is important to note that there were only 11 respondents in this age group).

Table 19 Age and the features that are considered to least represent ideas of tranquillity

Feature	Age Group:							
Noise pollution (man-made)	$\mathbf{1 8 - 2 5}$	$\mathbf{2 6 - 3 5}$	$\mathbf{3 6 - 4 5}$	$\mathbf{4 6 - 5 5}$	$\mathbf{5 6 - 6 5}$	$\mathbf{6 6 - 7 5}$	$\mathbf{7 6 +}$	Total
No of	3	11	11	54	97	97	64	337
responses	$.9 \%$	3.3%	3.3%	16%	28.8%	28.8%	19%	100%
\% of respondents by age group for the feature 'noise pollution'								
\% of respondents within age group	100%	91.7%	61.1%	80.6%	78.2%	78.9%	61%	

There are no significant differences in the patterns of responses across the age groups for the following features provided in the questionnaire:

- Man-made infrastructure and built up areas $\left(x^{2}(1)=9.18, p<.10\right)$.
- Holiday season and feeling of being overcrowded $\left(x^{2}(1)=8.86, p<.18\right)$.
- \quad Seaside Noise $\left(x^{2}(1)=11.80, p<.07\right)$.
- Litter and fly tipping $\left(x^{2}(1)=10.67, p<.10\right)$.

[^19]
4 Residency to the north, south and middle of the Purbeck Ridge

Early on in the project, partners questioned as to whether or not views could be distinguished according to where householders lived. Given for example, the location of the case study area as primarily a tourist destination for which the coastal areas, as a Jurassic Coastline attracts more than 16.5 million visitors per year ${ }^{83}$, and potential for host-guest conflicts (Butler 1980) this aspect was investigated further. Analysis of the data indicates that there is a strong association between whether respondents reside to the north, south and middle of the Purbeck Ridge and the feature 'holiday season and a feeling of being overcrowded' which is considered to least represent ideas of tranquillity (see 4.5, page 37).

4.1 Residency to the north, south and middle of the Purbeck Ridge and engagement

/disengagement

Analysis of the data relating to residency and engagement are presented in section 1.3. This indicates that there is no significant association between whether respondents reside to the north, the south or in the middle of the Purbeck Ridge and whether they are engaged and disengaged $\left(x^{2}(1)=2.53, p<.28\right)$. For further details please refer to Appendix 6.
4.2 Residency to the north, south and middle of the Purbeck Ridge and gender

Analysis of the data relating to residency and gender are presented in section 2.3 and indicates that there is no significant association between whether respondents reside to the north, south or in the middle of the Purbeck Ridge and their gender ($x^{2}(1)=.66, p<.72$). Further details are provided in Appendix 10.
4.3 Residency to the north, south and middle of the Purbeck Ridge and age

Analysis of the data relating to residency and age are presented in section 3.3 and indicates that there is no significant association between whether respondents reside to the north, south or in the middle of the Purbeck Ridge and age $\left(x^{2}(1)=3.44, p<.99\right)$. The results are presented in Appendix 13.

[^20]4.4 Residency to the north, south and middle of the Purbeck Ridge and features that are considered to make an area tranquil

Research Question: Is there an association between whether respondents resides to the north, south or middle of the Purbeck Ridge and features that are considered to make an area tranquil?

The frequency and percentage of responses given by respondents who reside to the north, south and in the middle of the Purbeck Ridge for each feature considered to make an area more tranquil is detailed below in Table 20. This data is reported together with details of whether a significant difference in the pattern of responses exists between these two variables.

The Pearson's Chi Square test indicates that there is no statistically significant difference in the pattern of responses between respondents that reside to the north, south and in the middle of the Purbeck Ridge and any of the features listed. Further details are provided in Appendix 16.

Table 20 Respondents residence and features that are considered to make an area more tranquil

Feature:	Frequency and \% Ticked			Total:	Notes:
	North	South	Middle		
$\begin{array}{c}\text { Natural environment and } \\ \text { sounds }\end{array}$	135	189	29	353	$\begin{array}{c}\text { No significant difference } \\ \left(x^{2}(1)=.68, p<.71\right)\end{array}$
Large Open Spaces	111	174	25	310	$\begin{array}{c}\text { No significant difference } \\ \left(x^{2}(1)=2.21, p<.33\right)\end{array}$
Few People	(74%)	(80.6%)	(78.1%)		(90.6%)

4.5 Residency to the north, south and middle of the Purbeck Ridge and features that are considered to least represent ideas of tranquillity

Research Question: Is there an association between whether respondents reside to the North or South of the Purbeck Ridge and features that are less tranquil?

The frequency and percentage of responses by given by respondents who reside to the north, south and in the middle of the Purbeck Ridge for each feature considered to least represent ideas of tranquillity, is detailed below in Table 21. This data is presented together with details of whether a significant difference in the pattern of responses exists between these two variables.

The Pearson's Chi Square test indicates that there is no statistically significant difference in the pattern of responses between respondents that reside to the north, south and in the middle of the Purbeck Ridge and four of the features listed. However, the test indicates that there is a difference in the pattern of responses for the feature, 'boliday season and 'a feeling of being overcrowded'. It appears that there is a significant association between respondents that reside to the north, south and in the middle of the Purbeck Ridge and 'holiday season and feeling of being overcrowded' $\left(x^{2}(1)=7.99, p<.02, \mathrm{~V}\right.$ $=.02$). Further details are provided in Appendix 17. It is noted that a Cramer V value of .01 indicates a small effect and a . 30 value indicates a medium effect, using Cohen's (1988) criteria, which suggests that this is not a strong association.

Table 21 Respondents residence and features that are less tranquil

Feature:	Frequency and \% Ticked			Total:	Notes:
	North	South	Middle		
Noise pollution (man-made)	$\begin{gathered} 106 \\ (70.7 \%) \end{gathered}$	$\begin{gathered} 163 \\ (75.5 \%) \end{gathered}$	$\begin{gathered} 27 \\ (84.4 \%) \end{gathered}$	296	No significant difference $\left(x^{2}(1)=2.90 p<.24\right)$
Man-made infrastructure and built up areas	105 (70%)	$\begin{gathered} 147 \\ (68.4 \%) \end{gathered}$	$\begin{gathered} 22 \\ (68.8 \%) \end{gathered}$	274	No significant difference $\left(x^{2}(1)=.11, p<.95\right)$
Holiday season and feeling of being overcrowded	$\begin{gathered} 109 \\ (72.7 \%) \end{gathered}$	$\begin{gathered} 136 \\ (63 \%) \end{gathered}$		272	Statistically significant association between residence and this feature $\left(x^{2}(1)=7.99, p<.02, V=.02\right)$
Seaside noise	92 (61.3%)			248	No significant difference $\left(x^{2}(1)=.36, p<.84\right)$
Litter and fly tipping	$\begin{gathered} 84 \\ (56 \%) \end{gathered}$	132 (61.1%)	$\begin{gathered} 16 \\ (50 \%) \end{gathered}$	232	No significant difference $\left(x^{2}(1)=1.94, p<.38\right)$

Of the 272 respondents that identified the feature 'boliday season and feeling of being overcrowded', Table 21 above shows that $109\left(40 \% 0^{84}\right)$ reside to the north of the Purbeck Ridge, $136(50 \%)$ reside to the south and $27\left(10 \% 0^{85}\right)$ reside in the middle of the Purbeck Ridge. The data shows that of those residents who reside in the middle of the Purbeck Ridge, $84 \% 86$ identified this feature as one which least represents their

[^21]idea of tranquillity. This compares to $73 \%{ }^{87}$ of the respondents residing to the north and $63 \%{ }^{88}$ of respondents living to the south of the Purbeck Ridge.

5 Associations between two or more variables

Further analysis of the data was planned using loglinear analysis in order to explore whether relationships between more than two categorical variables exist within the questionnaire responses, for example, engagement, gender and 'features that are considered to make an area more tranquil'. However as can be seen from the report summary there are no significant associations within the data that coincide.

For example, whilst there are significant associations between 'gender' of respondent and whether a respondent is 'engaged or disengaged', there are no significant associations with regard to the features that are considered to least represent ideas of tranquillity. Thus, for example, for gender the test indicated a significant association with the feature 'seaside noise' and for engaged/disengaged respondents the test indicated a significant association with the feature 'noise pollution (man-made)'.

Appendix 18 provides details of the loglinear analysis for this example and highlights that a two way effect exists (where $\left(x^{2}(1)=10.12, p<.02\right)$, however, there is no significant three way interaction ($\left(x^{2}(1)\right.$ $=2.17, p<.14$).

[^22]
List of References

Barnes, M., 1999. Researching Public Participation. Local Government Studies. Vol. 25 (4) pp60-75.

Burton, P., 2003. Community involvement in neighbourhood regeneration: stairway to heaven or road to nowhere? Available from: www.bristol.ac.uk. [Accessed 10 March 2008].

Butler, R.W 1980. The concept of a tourist area cycle of evolution: implications for management of resources. Canadian Geographer 24 pp.5-12

Field, A. (2013). Discovering Statistics using IBM SPSS Statistics, $4^{\text {th }}$ Ed, London; Sage
Cohen, J.W.(1988) Statistical Power Analysis for the Behavioural Sciences (2 $2^{\text {nd }}$ Ed) Hillsdale, NJ:
Lawrence Erlbaum Associates
Cox, D., (2008). The democratic deficit. Guardian 8 January 2008. Available from:
www.guardian.co.uk/con=mmentsfree/2008/jan/08/thedemoctaraticdeficit. [Accessed: 15 June 2008].

DCLG., 2006.a. 2005 Citizenship Survey. London: DCLG.

DCLG., 2006 b. 2005 Community Cohesion topic report. London: DCLG.

DCLG., 2007 a Motivations and Barriers to Citizen Governance London: DCLG.

DCLG 2007 b. Planning for a sustainable future. White Paper. London: DCLG.

DCLG., 2008. Communities in control: Real People, Real Power London: HMSO.

Hewlett, D 2010 Community Participation in the Planning and Management of Protected Areas: the Case of the New Forest National Park, Hampshire. PhD Award 2010 Not published.

Hewlett, D \& Edwards J. 2013. Beyond prescription: community engagement in the planning and management of National Parks as tourist destinations. Tourism Planning and Development 10,1 pp. 453-465

HO., 2003. 2001 Home Office Citizenship Survey: people, families and communities. Research Study 270. London: Home Office

HO., 2004. Facilitating community involvement: practical guidance for practitioners and policy makers. London: Home Office

Lyons,M., 2006. Lyons Inquiry., 2006. National Prosperity, local choice and civic engagement - A new partnership between central and local government for the 21st century HMSO : Norwich.

Lyons Inquiry., 2007. Place-shaping: a shared ambition for the future of local government Final Report HMSO : Norwich.

Melville, R., 2005. Individualising social and political participation - reconstituting youth in policy making Available from:www.sprc.unsw.edu.au/ASPC2005/papers/Paper146.pdf [Accessed 1 October 2006].
Mulvey, S., 2003. The EU's democratic challenge. BBC 21 November 2003.Available from: www.news.bbc.co.uk/1/hi/world/europe/3224666.stm. [Accessed: 2 June 2008]

ONS (2014) Population Estimates for UK, England and Wales, Scotland and Northern Ireland, Mid 2013. Available at: http://ons.gov.uk/ons/taxonomy/index.html?nscl=Population\#tab-data-Tables. [Accessed 11.08.14]

Oakley, P., 1999. Projects with People. The practice of participation in rural development. 2nd ed. Geneva: International Labour Organisation.

ODPM., 2002. Public Participation in Local Government A survey of local authorities London: ODPM.

ODPM., 2004a. Community Involvement in Planning: The Government's Objectives. London: ODPM.

O’Toole, T., [ca. 2004] Explaining Young People's Non-participation: Towards a Fuller Understanding of the Political. Available from: www.essex.ac.uk/ecpr/events/jointsessions/paperarchive/uppsala/ws24/otoole.pdf [Accessed 12 December 2007].

Pallant, J. (2010). SPSS Survival Manual, $4^{\text {th }}$ Ed, Maidenhead; Open University Press.

Parry, G., Moyser, G., Day, N., 1992. Political participation and democracy in Britain. Cambridge: Cambridge University Press.

Pimbert, M., Pretty, J., 1997. Parks, People and Professionals: Putting participation into protected area management In: Ghimire, K B., Pimbert, M. P. eds. Social Change and Conservation. London Earthscan pp297330 .

Putman, R. D., 1993. Making Democracy Work civic traditions in Modern Italy New Jersey: Princeton University Press.

Putnam, R. D., 2000. Bowling Alone New York: Simon \& Schuster Paperbacks.

Putnam, R.D., 2002. Conclusion. In: Putnam, R.D., ed. Democracies in Flux. Oxford: Oxford University Press.

Putnam, R.D., Goss, KA., 2002. Introduction. In: Putnam, R.D., ed. Democracies in Flux. Oxford: Oxford University Press.

Scottish Natural Heritage 2005 A REVIEW OF RELEVANT EXPERIENCE IN SUSTAINABLE
TOURISM IN THE COASTAL AND MARINE ENVIRONMENT. Steven \& Associates 2006

UNECE., 2003. Convention on Access to Information, Public Participation in Decision-making and Access to Justice in Environmental Matters. Available from www.unece.org/env/pp/contenttofaarhus.htm. [Accessed 17 November 2003].

Woolf, M. (2005b). The proof: Vote reform will boost turnout. The Independent. 15 June 2006 Available from: www.news.independant.co.uk/uk/politics/article225916.ece [accessed 25 October 2006].

World Bank.,1992. Governance and development World Bank: Washington D C.

World Bank 2008 Governance Matters 2008 Worldwide Governance Indicators 1996-2007. Available from: http://info.worldbank.org/govrenance/wgi/index.asp. [Accessed 25 July 2008].

Appendices

Appendix 1

Household Questionnaire

Appendix 2
Question 7c: Features which are considered to make an area more tranquil - 'other comments' classified according to categories and themes

	Comment	Themes									
Category				$\begin{aligned} & \frac{\rightharpoonup}{4} \\ & \stackrel{y}{6} 0 \end{aligned}$	范			$\frac{3}{3}$			E. ¢ ¢ ¢
	Few signs of human presence. I.E. low frequency, low profile, low noise.	X	X								
	Absence of loud event music.	X	X								
	Lack of man-made noise	X	X								
	Less man-made noise	X	X								
	No human made sounds	X	X								
	Lack of man-made sounds	X	X								
	Lack of road noise, limited traffic.	X	X								
	Absence of loud traffic noise.	X	X								
	The lack of engine sounds- from cars, planes, jet skis.	X	X						X		
	Absence of intrusive noise: loud traffic, jet skis, speed boats, scrambling bikes, other people music, low aircraft.	X	X					X	X		
	Lack of noises (man-made) lack of industrial buildings + sites, lack of commercialism.	X	X								
	No motorways in Dorset	X			X						
	Less cars + pollution	X									
	Total (page 1)	13	11	0	1	0	0	1	2	0	0

Category	Comment	Themes									
					号			震		$\begin{aligned} & \text { \# } \\ & .0 \\ & \stackrel{y}{J} \\ & \stackrel{0}{0} \end{aligned}$	E 0 ¢ ¢
	Total (page 1)	13	11	0	1	0	0	1	2	0	0
	Lack of vehicular traffic, no "eyesores"	X		X	X						
	Less big vehicles	X									
	No cars	X									
	Reduced traffic + traffic noise.	X	X		-						
	Freedom from traffic+ industry.	X			X		X				
	Lack of traffic, either people or motorised.	X									
	Lack of traffic, 'Urban' noise.	X	X		X						
	Small roads with slow or light traffic.	X									
	Lack of commercial pressure and aggressive traffic *	X			X						
	Lack of commercial pressure and aggressive traffic *	X			X						
	No roads or at least no busy traffic - heavy goods + coaches prohibited vehicles.	X									
	Little traffic.	X									
	Lack of litter/road side clutter (signs etc) lack of cars.	X		X							
	Not built up, no rowdy people.	X									
	Crowds - lack of.	X									
	Total c/fwd	28	13	2	6	0	1	1	2	0	0

Category	Comment	Themes									
		$\begin{aligned} & \vec{E} \\ & \text { E } \\ & \text { E } \\ & \text { En } \end{aligned}$	它	$\begin{aligned} & \frac{7}{50} \\ & i=0 \end{aligned}$	$\begin{aligned} & y_{0}^{2} \\ & E_{0} \\ & 0 \end{aligned}$			苞	W	\#	E $\stackrel{\sim}{0}$ ¢
Human Attributes - Tranquil (Continued)	Total c/fwd from page 2	28	13	2	6	0	1	1	2	0	0
	Considerate control of young children and pet dogs, which my family has always exercised	X			X					X	
	Absence of industry, cars, stressful activities etc.	X			X			X			
	Architecture in keeping with the area.	X		X							
	No man-made structures or houses.	X									
	No affordable housing and no off shore wind farms.	X			X						
	No wind turbines.	X									
	No wind turbines to ruin the beautiful view.	X		X	X						
	Lack of litter.	X									
	No conflicts.	X			X						
	Specific family picnic areas. (see New Forest arrangements)	X						X			
	I don't mind sharing the tranquillity with other people.	X			X						
	Get there by public transport + good walk back.	X						X			
	For people to holiday in.	X						X			X
	Total Human Attributes - Tranquil	41	13	4	12	0	1	5	2	1	1

*appears twice in comments

Category	Comment	Themes												
			$\begin{aligned} & \text { 2. } \\ & 0.0 \\ & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & \frac{7}{30} \\ & \stackrel{6}{60} \end{aligned}$	$\begin{aligned} & \text { 走 } \\ & 000 \\ & 000 \end{aligned}$		$\begin{aligned} & \ddot{\circ} \\ & \text { ू̈ } \\ & \text { कि } \end{aligned}$	年	تु §ु 0 0	－		$\begin{aligned} & \ddot{H} \\ & \overrightarrow{7} \\ & \end{aligned}$	च ¢	
芴	The sounds of the countryside，birds etc．		X			X					X	X		
	Bird song，lapping water		X			X				X		X		
	Birdsong		X			X						X		
	To be able to hear the sea is wonderful		X		X	X			X					
	Fresh running water					X				X				
	Sea lapping on shore					X			X					
	Streams／small rivers －smaller open spaces ／fields／woods－if quiet＋traffic free．		X			X	X			X	X			
	Unspoilt countryside and seascape－no debris or unnatural constructions．	X		X		X			X		X			
	Keep open spaces free from habitations	X			X	X	X							
	$\begin{aligned} & \text { "Secret" hidden } \\ & \text { smaller areas - both } \\ & \text { coastal + countryside* } \end{aligned}$				X	X	X		X		X			
	Total（page 1）	2	5	1	3	10	3	0	4	3	4	3	0	0

[^23]| Category | Comment | Themes | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | $\begin{aligned} & 0 \\ & \frac{0}{0} \\ & \frac{0}{4} \\ & \hline \end{aligned}$ | $\frac{5}{5}$ | $\begin{aligned} & \sum_{0}^{0} \\ & 0_{0}^{0} \\ & 0 \end{aligned}$ | | $\begin{aligned} & \ddot{\tilde{W}} \\ & \tilde{\mathscr{n}} \end{aligned}$ | | | 苂 | | $\begin{aligned} & \text { 叛 } \\ & \vec{H} \end{aligned}$ | च | ¢ ¢ ¢ |
| | Total (c/fwd from page 1) | 2 | 5 | 1 | 3 | 10 | 3 | 0 | 4 | 3 | 4 | 3 | 0 | 0 |
| | "Secret" hidden smaller areas - both coastal + countryside* | | | | X | X | X | | X | | X | | | |
| | "blue remembered hills". | | | X | X | X | | | | | | | | |
| | Trees. | | | | | X | | | | | | | | |
| | Sky, sunsets, stars, (no street lights)* | X | | | | X | | | | | | | | |
| | Sky, sunsets, stars, (no street lights)* | X | | | | X | | | | | | | | |
| | Wildlife. | | | | | X | | | | | | X | | |
| | Trees \& still water, woodland glade. | | | | | X | | | | X | | | | |
| | Trees, water, rivers. | | | | | X | | | | X | | | | |
| | Beautiful countryside. | | | X | | | | | | | X | | | |
| | Bluebells, daffodils, lambs. | | | | X | X | | | | | | X | | |
| | Wild animal presence (I have seen here deers). | | | X | | X | | | | | | X | | |
| | Total c/fwd | 4 | 5 | 4 | 6 | 20 | 4 | 0 | 5 | 5 | 6 | 6 | 0 | 0 |

*appears twice in comments

	Comment	Themes												
Category		$\begin{aligned} & \vec{B} \\ & \text { E } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \text { e. } \\ & \text { 弟 } \\ & 4 \end{aligned}$		$\begin{aligned} & \stackrel{y}{y} \\ & \tilde{y}_{0}^{0} \\ & 0 \end{aligned}$			完		苞		$\begin{aligned} & \mathscr{H} \\ & \vdots \\ & \# \end{aligned}$	ت है	¢ \％ \％ in
	Total c／fwd from page 2	4	5	4	6	20	4	0	5	5	6	6	0	0
	Birds，flowers，fungi．					X						X		
	Bird song，butterflies， dragon flies，sheep， cows in field，wild deer，gorse in flower．		X			X					X	X		
	Wild animals，birds．					X						X		
	Sheer captivating views．			X	X									
	The sheer beauty of Dorset．			X	X									
	Viewing the sky at night．			X										
	Dark skies，as little ambient light as possible to appreciate the peace of a night sky．			X	X									
	Unpolluted air，smell of grass and other appropriate scents． NOT steam railway not within its＇$x x x$＇	X			X	X							X	
	Fresh Air＊				X	X								
	Fresh Air＊				X	X								
	Total c／fwd	5	6	8	12	26	4	0	5	5	7	9	1	0

Category	Comment	Themes														
			$\begin{aligned} & \text { ed } \\ & \text { 易 } \\ & \frac{8}{4} \end{aligned}$	$\stackrel{\rightharpoonup}{4}$	串			$\begin{aligned} & \ddot{0} \\ & \tilde{W} \\ & \text { שn } \end{aligned}$	$\frac{3}{3}$			－		$\begin{aligned} & \text { 券 } \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \overline{\ddot{U}} \\ & \text { in } \end{aligned}$	¢ ¢ W．
	Total c／fwd from page 3	5	6	8	12		26	4	0	5		5	7	9	1	0
	Hills						X									
	A great walk to the sea．								X	X						
	Country pursuits， angling traditional， potting \＆crabbing boats，small fishing boats \＆sail boats．								X	X			X			X
	Total Natural Attributes－Tranquil	5	6	8	12		27	4	2	7		5	8	9	1	1
Category	Comment					Themes										
						$\begin{aligned} & \text { ? } \\ & \hline \end{aligned}$					\％					
Human \＆ Natural	No traffic，beautiful，far－reaching，unspoiled views．					X		X	X		X					
Attributes －Tranquil	Total for Human and Natural Attributes－Tranquil					1		1	1		1					

Total of 82 comments for 'Other' features

Appendix 3

Question 8 c ．Features which least represent idea of tranquillity－＇other＇comments classified according to categories and themes

Category	Comments	Themes													
				$\begin{aligned} & y \\ & y_{0} \\ & y_{0} \end{aligned}$			家			$\begin{aligned} & \frac{7}{3} \\ & \stackrel{y}{60} \\ & \dot{6} \end{aligned}$	$\begin{aligned} & \overline{\ddot{u}} \\ & \stackrel{y}{n} \end{aligned}$	$\begin{aligned} & \text { 플 } \\ & \text { 플 } \\ & \text { 号 } \\ & \text { Z } \\ & \text { Z. } \\ & \text { In } \end{aligned}$	磁	$\begin{aligned} & \text { む } \\ & \text { J J } \\ & \text { D } \end{aligned}$	$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & \tilde{y y} \\ & \tilde{\sim} \end{aligned}$
	High Volumes of traffic－ especially lorries．	X		X	X										
	Insensitively placed drilling rigs．	X		X											
	Steam trains．	X													
	Inconsiderate parking on double yellow lines．	X	X												
	Swanage steam railway operations which taint the ambient seaside air－see my recent letter（ photocopy enclosed）	X	X	X											
	Constant traffic．	X													
	Enormous lorries struggling through small villages．	X		X											
	People are OK，jet skis，low flying pleasure aircraft，over－ loud fireworks are not and the world＇s biggest wind farm is definitely not．	X		X	X	X									X
	Queuing traffic．	X													
	Traffic jams，congestion．	X													
	Total（page 1）	10	2	5	2	1	0	0	0	0	0	0	0	0	1

Category	Comments	Themes													
		$\begin{aligned} & \vec{G} \\ & \text { E } \\ & \text { E} \\ & \text { En } \end{aligned}$		$\begin{aligned} & \mathscr{y} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \end{aligned}$	\％					$\begin{aligned} & \text { च } \\ & \text { 的 } \end{aligned}$			$\begin{aligned} & \text { J. } \\ & \text { だ } \\ & 0 \end{aligned}$	
	Total（c／fwd from page 1）	10	2	5	2	1	0	0	0	0	0	0	0	0	1
	Cycling events on minor roads， off－roading and general public treating the countryside as a playground．	X	X				X						X		X
	High population \＆housing density．	X		X											
	People who come with dogs and no not clear up after them －because they are on holiday．	X	X	X					，						
	Mainly youngsters drinking too much．	X	X	X											
	Cutting of grass－overfill－ affects bees＋butterflies	X	X	X				X							
	Particularly people who have been drinking shouting， screaming and singing very late at night ie；after midnight．	X	X		X										
	Next door feeding the seagulls and rooks at 5：30am every morning．	X	X												
	Lack of consideration by people．（selfishness）	X	X												
	Any human interruption， $\operatorname{dog}(\mathrm{s})$ walkers，joggers， cyclists．	X	X				X								
	Ill－mannered people getting too drunk all the time．	X	X	X											
	Total c／fwd	20	11	10	3	1	2	1	0	0	0	0	1	0	2

Category	Comments	Themes													
				$\begin{aligned} & \dot{y} \\ & E_{0}^{0} \\ & 0 \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		20	$\begin{aligned} & \text { 品 } \\ & \text { 霛 } \end{aligned}$							$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & \tilde{y y} \\ & \tilde{W} \end{aligned}$
	Total (c/fwd from page 2)	20	11	10	3	1	2	1	0	0	0	0	1	0	2
	Cyclists, hordes of walkers, marathon events.	X	X				X								
	Human - induced stress in general.	X		X					X						
	Anything to do with massed humans.	X		X											
	Arson on the heath, dogs not on leads, dogs left in cars.	X	X												
	Airplanes, picnics + golf.	X					X								
	Dog poo in bags all over gates left open by cyclists.	X	X				X								
	'Fancy' new gates which don't work well.	X		X											
	Too many bad mannered dogs left in house all day to bark + disturb.	X	X		X										
	Loud music played in Vista swimming pool.	X	X												X
	Loud people, swearing, shouting etc.	X	X		X										
	Dogs barking, babies crying.	X	X		X										
	Arcade noises.	X			X										
	Hedge/grass cutters. Light aircraft.	X			X										
	Heavy Military firing.	X			X										
	Total c/fwd	34	18	13	9	1	5	1	1	0	0	0	1	0	3

Category	Comments	Themes													
		$\begin{aligned} & \text { D } \\ & \text { B } \\ & \text { 采 } \end{aligned}$		$\begin{aligned} & 0 \\ & D_{0}^{0} \\ & 00 \\ & 000 \end{aligned}$	$\begin{aligned} & 2 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \\ & 3 \end{aligned}$		青	$\begin{aligned} & \text { 券 } \\ & \text { ? } \end{aligned}$		$\begin{aligned} & \frac{1}{20} \\ & \dot{B 0} \end{aligned}$	\％			$\begin{aligned} & \text { む } \\ & \text { ت゙ } \\ & \text { E } \\ & \hline \end{aligned}$	n E \％ ¢ d
Human Attributes - Non Tranquil (Continued)	Total（c／fwd from page 3）	34	18	13	9	1	5	1	1	0	0	0	1	0	3
	Gun fire from the ranges．	X			X										
	Guns firing on range．	X			X										
	Railway warning hooters．	X			X										
	Aircraft noise，heavy industrial transport noise，gunfire．	X			X										
	Frequent sirens．	X			X										
	Police sirens．	X			X										
	Excavating，mining，firing．	X			X										
	Street lights＋wind farms（has anyone thought about the migrating birds that will be affected？）	X			X										
	Wind turbines．The most serious problem is the exponential increase in motor traffic，noise + congestion．	X			X										
	Wind farm＋solar panels．	X													
	Wind farms．	X													
	Wind farms．	X													
	Wind turbines	X													
	Total c／fwd	47	18	13	18	1	5	1	1	0	0	0	1	0	3

Category	Comments	Themes													
		$\begin{aligned} & \vec{E} \\ & \text { = } \\ & \text { E } \end{aligned}$		$\begin{aligned} & \sum_{0}^{0} \\ & 0_{0}^{0} \end{aligned}$	$\begin{aligned} & 20 \\ & 0 \\ & 0 \\ & \frac{0}{4} \end{aligned}$		$\frac{3}{y}$	$\begin{aligned} & \text { 㠿 } \\ & \text { 霛 } \end{aligned}$	$\begin{aligned} & \ddot{B} \\ & \sum_{0}^{E} \\ & \ddot{0} \\ & \tilde{y} \\ & \tilde{y} \end{aligned}$		$\stackrel{\text { ® }}{\text { ¢ }}$	$\begin{gathered} \text { 플 } \\ \text { E } \\ \text { E } \\ \text { Z } \\ \text { Z } \\ \text { In } \end{gathered}$		$\begin{aligned} & \text { む } \\ & \text { だ } \\ & \text { D } \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & \text { \# } \\ & \text { W } \end{aligned}$
Human Attributes－Non Tranquil（Continued）	Total（c／fwd from page 4）	47	18	13	18	1	5	1	1	0	0	0	1	0	3
	Wind turbines（unsightly，noisy down－wind；blatant con on the public purse and the 143 solar farms at present seeking planning permission be rejected totally as being terribly harmful to our valued landscape．	X		X	X					X		X			
	Offshore wind farms．	X													
	Off shore wind farms！ Graffiti，trawlers．	X	X	X											
	Wind farms and fracking．	X													
	Proposed fracking and wind farms．	X													
	Wind farms．	X													
	Industrial noise from business， mines，wind farms etc．	X		X	X										
	Wind turbines that always catch the eye when spinning－ loathed．	X		X						X		X		X	
	The everlasting presence of the council Gustapo．	X		X											
	Public footpaths made inaccessible．	X		X									X		
	Affordable housing in area of AONB．	X		X											
	Total c／fwd	58	19	20	20	1	5	1	1	2	0	2	2	1	3

Category	Comments	Themes													
		$\begin{aligned} & \vec{B} \\ & \text { E } \\ & \text { En } \end{aligned}$		$\begin{aligned} & 0 \\ & y_{0}^{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\frac{\stackrel{y}{3}}{4}$				$\begin{aligned} & \overline{\stackrel{\rightharpoonup}{g}} \\ & \text { n } \end{aligned}$			$\begin{aligned} & \text { Ü } \\ & \text { تु } \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & \tilde{y y y y y} \\ & \text { W. } \end{aligned}$
Human Attributes - Non Tranquil (Continued)	Total (c/fwd from page 5)	58	19	20	20	1	5	1	1	2	0	2	2	1	3
	Unsympathetic planning of buildings - fitting and design.	X		X											
	Bad planning: autistic children ought not to be sited in adjacent property.	X		X						-					
	Ugly buildings eg Mowlem theatre.	X		X						X					
	Take away shops.	X													
	Local cost of living and poor quality shops.	X		X											
	All night clubs + pubs.	X													
	Shops, b\&b's, pubs and villages.	X											X		
	Too much commercialism, amusement arcades, drinking of alcohol outside.	X	X	X											
	Light pollution.	X								X					
	Light pollution.	X			,					X					
	Light pollution.	X								X					
	Polluted air.	X													
	Agricultural mulch spreading can be noxious	X	X				X								X
	Possibly because I'm getting old and don't like sharing.	X		X											
	Total c/fwd	72	21	26	20	1	6	1	1	6	0	2	3	1	4

Category	Comments	Themes													
				$\begin{aligned} & 0 \\ & : y_{0}^{0} \\ & 0_{0}^{0} \end{aligned}$	$\begin{aligned} & \text { en } \\ & \text { en } \\ & 0 \end{aligned}$		\sum_{4}^{2}	$\%$ \# $=0$			च 岂			$\begin{aligned} & \stackrel{\rightharpoonup}{J} \\ & \stackrel{\rightharpoonup}{J} \\ & 0 \end{aligned}$	$$
Human Attributes - Non Tranquil (Continued)	Total (c/fwd from page 6)	72	21	26	20	1	6	1	1	6	0	2	3	1	4
	'Adventure activities' speed, effort, competition, large groups.	X		X			X								X
	My belief in life	X		X					X						
	Standing room only in Dr's waiting room!	X		X											
	General rush + haste.	X		X					X						
	Total for Human Attributes - NonTranquil	76	21	30	20	1	7	1	3	6	0	2	3	1	5

Category	Comments	Themes													
				䧺		$\begin{aligned} & \text { ٓ⿹\zh26灬 } \\ & \stackrel{W}{\tilde{0}} \\ & 0 \end{aligned}$	$\frac{2}{2}$	$\begin{aligned} & \text { 券 } \\ & \frac{7}{7} \end{aligned}$			$\begin{aligned} & \overline{\ddot{む}} \\ & \text { שn } \end{aligned}$			$\begin{aligned} & \text { J. } \\ & \text { だ } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { n } \\ & 0 \\ & 0 \\ & \tilde{W} \\ & \tilde{W} \end{aligned}$
Natural Attributes	Too Little Space											X			
－Non Tranquil	Total for Natural Attributes－Non－ Tranquil	0	0	0	0	0	0	0	0	0	0	1	0	0	0

Category	Comments	Themes													
		$\begin{aligned} & \vec{E} \\ & \text { E } \\ & \text { E } \end{aligned}$		$\begin{aligned} & \stackrel{y}{E} \\ & E_{0} \\ & 0 \end{aligned}$			E $\frac{3}{3}$ 4	$\begin{aligned} & \text { 卷 } \\ & \# \end{aligned}$		$\frac{\stackrel{\rightharpoonup}{4}}{\substack{30}}$	च あ			$\begin{aligned} & \stackrel{\rightharpoonup}{J} \\ & \stackrel{\rightharpoonup}{J} \\ & D \end{aligned}$	$\begin{aligned} & \text { u} \\ & 0 \\ & 0 \\ & \tilde{W} \\ & \tilde{W} \end{aligned}$
	Fracking！Exploratory works starting in the autumn，a huge concern to nature \＆humans．	X													X
	Anything that spoils the natural environment，visual，audible，over＋ above necessity．	X		X	X					X		X			
	Total for Natural \＆Human Attributes－Non－Tranquil	2	0	1	1	0	0	0	0	1	0	1	0	0	1

Category	Comments	Themes													
				$\stackrel{y}{E}$			童	$\begin{aligned} & \mathscr{y y} \\ & \text { 券 } \end{aligned}$		$\frac{\overrightarrow{5}}{a}$	気			$\begin{aligned} & \text { تै } \\ & \text { تु } \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & 0 \\ & 0 \\ & \tilde{y} \\ & \text { in } \end{aligned}$
	Caravans in farmers＇fields．In－ considerate people who drive their 4×4＇s along historic bridleways e．g． near Church Knowle－Corfe Castle．	X	X				X								X
	2000 cyclists on Sundays reign on Purbeck lands．	X	X				X								X
	Purbeck has far too many camp sites， roads are clogged with camper and caravans．														
	Roads are too busy，more car parking in Corfe Castle needed．														
	Noise from Lulworth firing range	X			X										
	No planning reg＇s for oldest parts of Swanage．	X		X		N									
	Bad design E．g．Mowlem，Swanage＋ de－lapidated buildings in prime sites E．g． 2 in Swanage in that state for 20 years + ．Council lacking initiative．	X		X											
	Sadly Corfe etc cannot exist without the tourist trade－has to be managed carefully．	X													X
	Wareham must have the tourist trade to survive sadly．	X													X
	Litter bins on Shore Rd on pavement， all parking on sea front．Santafe Park， Jurassic adventure．	X	X	X		X									X
	Total（page 1）	8	3	3	1	1	2	0	0	0	0	0	0	0	5

Category	Comments	Themes													
				$\begin{aligned} & \underset{B}{y} \\ & y_{0}^{0} \\ & 0 \end{aligned}$		$\begin{aligned} & \text { تू } \\ & \text { Wु } \\ & 0 \end{aligned}$	$\frac{3}{3}$	$\begin{aligned} & \text { 卷 } \\ & \vdots \\ & \text { N } \end{aligned}$	tate of Mind		$\begin{aligned} & \overline{\ddot{y}} \\ & \stackrel{n}{n} \end{aligned}$			$\begin{aligned} & \text { U. } \\ & \text { NJ } \\ & \text { D } \end{aligned}$	
	Total (from page 1)	8	3	3	1	1	2	0	0	0	0	0	0	0	5
	Purbeck can be very windy. Walking the ridge from Old Harry to Corfe on a windy day, though beautiful is not tranquil.	X					X			X				X	
	Range (Military range at Lullworth)	X					X		-						
	Total for Places - Non-Tranquil	10	3	3	1	1	4	0	0	1	0	0	0	1	5

	Comments	Themes													
Category		$\begin{aligned} & \text { B } \\ & \text { E } \\ & \text { E } \\ & \text { EN } \end{aligned}$		$\begin{aligned} & \text { y } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & \text { 步 } \\ & \\ & \hline \end{aligned}$		$\begin{aligned} & \frac{7}{30} \\ & \dot{6} \end{aligned}$	च				¢ 0 0 0 0
	There are interesting acoustics here and sounds reflected from adjacent buildings.	X		X	X										
	No objections to wind farms as long as discreetly engineered!	X		X											
	Total for Human Attributes Tranquil	2	0	2	1	0	0	0	0	0	0	0	0	0	0

Category	Comments	Themes													
			$\begin{aligned} & \text { \# } \\ & .0 \\ & \stackrel{y}{5} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{y}{y} \\ & y_{0}^{0} \\ & 0 \end{aligned}$		$\begin{aligned} & \text { ٓ⿹\zh26灬 } \\ & \stackrel{W}{\tilde{0}} \\ & 0 \end{aligned}$	$\frac{3}{3}$	$\begin{aligned} & \text { 弟 } \\ & \end{aligned}$		$\begin{aligned} & \frac{7}{50} \\ & \dot{6} \end{aligned}$	$\begin{aligned} & \overline{\ddot{\omega}} \\ & \underset{\sim}{n} \end{aligned}$		들	$\begin{aligned} & \text { む } \\ & \text { Jy } \\ & \text { D } \end{aligned}$	$$
	Most places are more tranquil out of the holiday season．	X		X											X
	We live in a beautiful place and we should welcome those who respect the area．	X	X	X						X					
	This is a seaside town and I love to see the visitors enjoying their bolidays．	X		X		X				X					X
	Total for Natural Attributes－Tranquil	3	1	3	0	1	0	0	0	2	0	0	0	0	2

A total of 96 comments

Appendix 4

Engaged/Disengaged and Gender

Each subscript letter denotes a subset of Engaged or Disengaged categories whose column proportions do not differ significantly from each other at the .05 level.

Chi-Square Tests

	Value	df	Asymp. Sig. (2sided)	Exact Sig. (2sided)	Exact Sig. (1sided)
Pearson Chi-Square	. $114^{\text {a }}$	1	. 735		
Continuity Correction ${ }^{\text {b }}$. 059	1	. 807		
Likelihood Ratio	. 114	1	. 735		
Fisher's Exact Test				. 777	. 404
Linear-by-Linear Association	. 114	1	. 735		
N of Valid Cases	452				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 99.21 .
b. Computed only for a 2×2 Table

Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	.016	.735
	Cramer's V	.016	.735
	Contingency Coefficient	.016	.735
N of Valid Cases		452	

Engaged/Disengaged and Age

Engaged or Disengaged * Age of participant

Each subscript letter denotes a subset of Age of participant categories whose column proportions do not differ significantly from each other at the .05 level.

Chi-Square Tests			
	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	5.474^{a}	6	.485
Likelihood Ratio	5.683	6	.460
Linear-by-Linear Association	.408	1	.523
N of Valid Cases	451		

[^24]Symmetric Measures

Nominal by Nominal	Phi	Value	Approx. Sig.
	Cramer's V	.110	.485
	Contingency Coefficient	.110	.485
N of Valid Cases		.110	.485

Engaged/Disengaged and Residency to the North, the South and in the middle of the Purbeck Ridge

			Is town/village North, South or Middle of Purbeck Ridge?			Total
			North	South	Middle	
Engaged or Disengaged	Disengaged	Count	86	107	19	212$100.0 \%$
		\% within Engaged or		50.5\%	90\%	
		Disengaged	40.6\%	50.5\%	9.0\%	
		\% within Is town/village North,				
		South or Middle of Purbeck	57.3\%	49.8\%	59.4\%	53.4\%
		Ridge?				
		\% of Total	21.7\%	27.0\%	4.8\%	53.4\%
	Engaged	Count	64	108	13	185
		\% within Engaged or	34.6\%	58.4\%	7.0\%	100.0\%
		Disengaged				
		\% within Is town/village North,				
		South or Middle of Purbeck	42.7\%	50.2\%	40.6\%	46.6\%
		Ridge?				
		\% of Total	16.1\%	27.2\%	3.3\%	46.6\%
Total		Count	150	215	32	397
		\% within Engaged or	37.8\%	54.2\%	8.1\%	100.0\%
		Disengaged				
		\% within Is town/village North,				
		South or Middle of Purbeck	100.0\%	100.0\%	100.0\%	100.0\%
		Ridge?				
		\% of Total	37.8\%	54.2\%	8.1\%	100.0\%

Chi-Square Tests

			Asymp. Sig. (2- sided)
Pearson Chi-Square	2.532^{a}	2	.282
Likelihood Ratio	2.537	2	.281
Linear-by-Linear Association	.434		1

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 14.91 .

Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	.080	.282
	Cramer's V	.080	.282
	Contingency Coefficient	.080	.282
N of Valid Cases		397	

Engaged/Disengaged and features that are considered to make an area more tranquil

Engaged/Disengaged*Feature: Natural Environment and Sounds

Chi-Square Tests					
	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2sided)	Exact Sig. (1sided)
Pearson Chi-Square	.288 ${ }^{\text {a }}$	1	. 591		
Continuity Correction ${ }^{\text {b }}$. 153	1	. 696		
Likelihood Ratio	. 287	1	. 592		
Fisher's Exact Test				. 662	. 347
Linear-by-Linear Association	. 288	1	. 592		
N of Valid Cases	456				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 24.16.
b. Computed only for a 2 x 2 Table

Engaged/Disengaged*Feature: Large Open Space

Chi-Square Tests					
	Value	df	Asymp. Sig. (2sided)	Exact Sig. (2- sided)	Exact Sig. (1sided)
Pearson Chi-Square	$1.869^{\text {a }}$	1	. 172		
Continuity Correction ${ }^{\text {b }}$	1.580	1	. 209		
Likelihood Ratio	1.883	1	. 170		
Fisher's Exact Test				. 187	. 104
Linear-by-Linear Association	1.865	1	. 172		
N of Valid Cases	456				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 49.21 .
b. Computed only for a 2×2 Table

Engaged/Disengaged *Feature: Few People

Chi-Square Tests					
	Value	df	Asymp. Sig. (2sided)	Exact Sig. (2sided)	Exact Sig. (1sided)
Pearson Chi-Square	. $016^{\text {a }}$	1	. 900		
Continuity Correction ${ }^{\text {b }}$. 000	1	. 983		
Likelihood Ratio	. 016	1	. 900		
Fisher's Exact Test				. 917	. 492
Linear-by-Linear Association	. 016	1	. 900		
N of Valid Cases	456				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 58.61 .
b. Computed only for a 2×2 Table

Engaged/Disengaged *Feature: See coastline and hear sea

Chi-Square Tests

	Value	df	Asymp. Sig. (2sided)	Exact Sig. (2sided)	Exact Sig. (1sided)
Pearson Chi-Square	$2.318^{\text {a }}$	1	. 128		
Continuity Correction ${ }^{\text {b }}$	2.026	1	. 155		
Likelihood Ratio	2.313	1	. 128		
Fisher's Exact Test				. 137	. 077
Linear-by-Linear Association	2.313	1	. 128		
N of Valid Cases	456				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 69.34 .
b. Computed only for a 2×2 Table

Engaged/Disengaged *Feature: In keeping with Purbeck Ridge

Chi-Square Tests					
	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.194a	1	. 660		
Continuity Correction ${ }^{\text {b }}$. 119	1	. 730		
Likelihood Ratio	. 194	1	. 660		
Fisher's Exact Test				. 704	. 365
Linear-by-Linear Association	. 194	1	. 660		
N of Valid Cases	456				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 87.68.
b. Computed only for a 2×2 Table

Appendix 8

Engaged/Disengaged and features that are consider to least represent ideas of tranquillity

Each subscript letter denotes a subset of Feature: Noise pollution (man-made) categories whose column proportions do not differ significantly from each other at the .05 level.

Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2sided)	Exact Sig. (1sided)
Pearson Chi-Square	$9.322^{\text {a }}$	1	. 002		
Continuity Correction ${ }^{\text {b }}$	8.679	1	. 003		
Likelihood Ratio	9.503	1	. 002		
Fisher's Exact Test				. 003	. 001
Linear-by-Linear Association	9.302	1	. 002		
N of Valid Cases	456				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 53.24.
b. Computed only for a 2×2 Table

Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	-.143	.002
	Cramer's V	.143	.002
	Contingency Coefficient	.142	.002
N of Valid Cases		456	

Disengaged/Engaged* Feature: Holiday season and feeling of being overcrowded

Chi-Square Tests					
	Value	df	Asymp. Sig. (2sided)	$\begin{gathered} \text { Exact Sig. (2- } \\ \text { sided) } \end{gathered}$	$\begin{gathered} \text { Exact Sig. (1- } \\ \text { sided) } \\ \hline \end{gathered}$
Pearson Chi-Square	.002 ${ }^{\text {a }}$	1	. 962		
Continuity Correction ${ }^{\text {b }}$. 000	1	1.000		
Likelihood Ratio	. 002	1	. 962		
Fisher's Exact Test				1.000	. 521
Linear-by-Linear Association	. 002	1	. 962		
N of Valid Cases	456				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 65.76 .
b. Computed only for a 2×2 Table

Disengaged/Engaged* Feature: man-made infrastructure and built up areas

Chi-Square Tests					
	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2sided)	Exact Sig. (1sided)
Pearson Chi-Square	.931a	1	. 335		
Continuity Correction ${ }^{\text {b }}$. 748	1	. 387		
Likelihood Ratio	. 934	1	. 334		
Fisher's Exact Test				. 366	. 194
Linear-by-Linear Association	. 929	1	. 335		
N of Valid Cases	455				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 66.80 .
b. Computed only for a 2×2 Table

Disengaged/Engaged* Feature: seaside noise

Chi-Square Tests					
	Value	df	Asymp. Sig. (2sided)	Exact Sig. (2sided)	Exact Sig. (1sided)
Pearson Chi-Square	$.462^{\text {a }}$	1	.497		
Continuity Correction ${ }^{\text {b }}$. 340	1	. 560		
Likelihood Ratio	. 462	1	. 497		
Fisher's Exact Test				. 503	. 280
Linear-by-Linear Association	.461	1	. 497		
N of Valid Cases	455				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 82.54 .
b. Computed only for a 2 x 2 Table

Disengaged/Engaged* Feature: litter and fly tipping

Chi-Square Tests					
	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2sided)	Exact Sig. (1sided)
Pearson Chi-Square	.194a	1	.660		
Continuity Correction ${ }^{\text {b }}$. 119	1	. 730		
Likelihood Ratio	. 194	1	. 660		
Fisher's Exact Test				. 704	. 365
Linear-by-Linear Association	. 194	1	. 660		
N of Valid Cases	456				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 87.68 .
b. Computed only for a 2×2 Table

Gender and Age

Gender * Age of participant

			Age of participant							Total
			18-25	26-35	36-45	46-55	56-65	66-75	76+	
Gender	Female	Count	$2 \mathrm{a}, \mathrm{b}, \mathrm{c}$	$10_{\text {c }}$	$14_{\text {c }}$	$42_{\mathrm{b}, \mathrm{c}}$ 18.3\%	$\begin{gathered} 63_{\mathrm{a}, \mathrm{~b}} \\ 27.4 \% \end{gathered}$		$\begin{array}{r} 42_{\mathrm{a}} \\ 18.3 \% \end{array}$	230
		\% within Gender	0.9\%	4.3\%	6.1\%					100.0\%
		\% within Age of participant	66.7\%	83.3\%	77.8\%	62.7\%	50.8\%	46.3\%	40.0\%	50.9\%
		\% of Total	0.4\%	2.2\%	3.1\%	9.3\%	13.9\%	12.6\%	9.3\%	50.9\%
	Male	Count	$1 \mathrm{a}, \mathrm{b}, \mathrm{c}$	$2{ }_{\text {c }}$	4 c	$25_{\text {b, }}$	$61_{\mathrm{a}, \mathrm{b}}$	$66^{\text {a }}$	63_{a}	222
		\% within Gender	0.5\%	0.9\%	1.8\%	11.3\%	27.5\%	29.7\%	28.4\%	100.0\%
		\% within Age of participant	33.3\%	16.7\%	22.2\%	37.3\%	49.2\%	53.7\%	60.0\%	49.1\%
		\% of Total	0.2\%	0.4\%	0.9\%	5.5\%	13.5\%	14.6\%	13.9\%	49.1\%
Total		Count	3	12	18	67	124	123	105	452
		\% within Gender	0.7\%	2.7\%	4.0\%	14.8\%	27.4\%	27.2\%	23.2\%	100.0\%
		\% within Age of participant	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%	100.0\%
		\% of Total	0.7\%	2.7\%	4.0\%	14.8\%	27.4\%	27.2\%	23.2\%	100.0\%

Each subscript letter denotes a subset of Age of participant categories whose column proportions do not differ significantly from each other at the .05 level.

Chi-Square Tests			
	Value	df	Asymp. Sig. (2sided)
Pearson Chi-Square	20.291a	6	. 002
Likelihood Ratio	21.185	6	. 002
Linear-by-Linear Association	18.552	1	. 000
N of Valid Cases	452		

a. 2 cells (14.3%) have expected count less than 5 . The minimum expected count is 1.47.

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. ${ }^{\text {b }}$	Approx. Sig.
Nominal by Nominal	Phi	. 212			. 002
	Cramer's V	. 212			. 002
	Contingency Coefficient	. 207			. 002
Interval by Interval	Pearson's R	. 203	. 044	4.394	.000 ${ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	. 192	. 045	4.151	.000 ${ }^{\text {c }}$
N of Valid Cases		452			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Gender and residency to the north, south or middle of the Purbeck Ridge

Gender * Is town/village North, South or Middle of Purbeck Ridge?

			Is town/village North, South or Middle of Purbeck Ridge?			Total
			North	South	Middle	
Gender	Female	Count	74	105	18	197
		\% within Gender	37.6\%	53.3\%	9.1\%	100.0\%
		\% within Is town/village				
		North, South or Middle of	50.0\%	48.6\%	56.3\%	49.7\%
		Purbeck Ridge?				
		\% of Total	18.7\%	26.5\%	4.5\%	49.7\%
	Male	Count	74	111	14	199
		\% within Gender	37.2\%	55.8\%	7.0\%	100.0\%
		\% within Is town/village				
		North, South or Middle of	50.0\%	51.4\%	43.8\%	50.3\%
		Purbeck Ridge?				
		\% of Total	18.7\%	28.0\%	3.5\%	50.3\%
Total		Count	148	216	32	396
		\% within Gender	37.4\%	54.5\%	8.1\%	100.0\%
		\% within Is town/village				
		North, South or Middle of	100.0\%	100.0\%	100.0\%	100.0\%
		Purbeck Ridge?				
		\% of Total	37.4\%	54.5\%	8.1\%	100.0\%

Chi-Square Tests			
	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	$.657^{\mathrm{a}}$	2	.720
Likelihood Ratio	.658	2	.720
Linear-by-Linear Association	.080	1	.778
N of Valid Cases	396		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 15.92 .

Appendix 11

Gender and features considered to make an area more tranquil

Gender * Feature: See coastline and hear sea

Each subscript letter denotes a subset of Feature: See coastline and hear sea categories whose column proportions do not differ significantly from each other at the .05 level.

Chi-Square Tests

			Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	Value	df			
Continuity Correction					

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 74.33 .
b. Computed only for a 2×2 Table

Symmetric Measures					
		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Nominal by Nominal	Phi	. 100			. 033
	Cramer's V	. 100			. 033
	Contingency Coefficient	. 099			. 033
Interval by Interval	Pearson's R	. 100	. 047	2.132	.034c
Ordinal by Ordinal	Spearman Correlation	. 100	. 047	2.132	.034 ${ }^{\text {c }}$
N of Valid Cases		453			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Gender*Feature: Natural Environment and sounds

Chi-Square Tests					
	Value	df	Asymp. Sig. (2sided)	Exact Sig. (2sided)	Exact Sig. (1sided)
Pearson Chi-Square	. $317{ }^{\text {a }}$	1	. 573		
Continuity Correction ${ }^{b}$. 172	1	. 679		
Likelihood Ratio	. 317	1	. 573		
Fisher's Exact Test				.656	. 339
Linear-by-Linear Association	. 316	1	. 574		
N of Valid Cases	453				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 25.11.
b. Computed only for a 2 x 2 Table

Gender*Feature: Large Open Spaces

Chi-Square Tests					
	Value	df	Asymp. Sig. (2sided)	Exact Sig. (2sided)	Exact Sig. (1sided)
Pearson Chi-Square	$1.668^{\text {a }}$	1	. 196		
Continuity Correction ${ }^{\text {b }}$	1.394	1	. 238		
Likelihood Ratio	1.670	1	. 196		
Fisher's Exact Test				. 222	. 119
Linear-by-Linear Association	1.665	1	. 197		
N of Valid Cases	453				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 52.18 .
b. Computed only for a 2×2 Table

Gender*Feature: Few People

Chi-Square Tests

			Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	Value	df			
Continuity Correction ${ }^{\text {b }}$	2.441^{a}	1	.118		
Likelihood Ratio	2.127	1	.145		
Fisher's Exact Test	2.447	1	.118		
Linear-by-Linear Association					
N of Valid Cases	2.436				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 63.50 .
b. Computed only for a 2×2 Table

Gender*Feature: In keeping with Purbeck landscape

Chi-Square Tests					
	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2sided)	$\begin{gathered} \text { Exact Sig. (1- } \\ \text { sided) } \end{gathered}$
Pearson Chi-Square	.035a	1	. 851		
Continuity Correction ${ }^{\text {b }}$. 009	1	. 926		
Likelihood Ratio	. 035	1	. 851		
Fisher's Exact Test				. 924	. 463
Linear-by-Linear Association	. 035	1	. 851		
N of Valid Cases	453				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 95.01 .
b. Computed only for a 2×2 Table

Appendix 12

Gender and features which least represent ideas of tranquillity

Gender * Feature: Seaside noise					
			Feature: Seaside noise		Total
			Yes	No	
Gender	Female	Count	126a	104 b	230
		\% within Gender	54.8\%	45.2\%	100.0\%
		\% within Feature: Seaside noise	46.8\%	56.8\%	50.9\%
		\% of Total	27.9\%	23.0\%	50.9\%
	Male	Count	143 a	79 b	222
		\% within Gender	64.4\%	35.6\%	100.0\%
		\% within Feature: Seaside noise	53.2\%	43.2\%	49.1\%
		\% of Total	31.6\%	17.5\%	49.1\%
Total		Count	269	183	452
		\% within Gender	59.5\%	40.5\%	100.0\%
		\% within Feature: Seaside noise	100.0\%	100.0\%	100.0\%
		\% of Total	59.5\%	40.5\%	100.0\%

Each subscript letter denotes a subset of Feature: Seaside noise categories whose column proportions do not differ significantly from each other at the .05 level.

Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2sided)	Exact Sig. (1sided)
Pearson Chi-Square	$4.349^{\text {a }}$	1	. 037		
Continuity Correction ${ }^{\text {b }}$	3.959	1	. 047		
Likelihood Ratio	4.359	1	. 037		
Fisher's Exact Test				. 044	. 023
Linear-by-Linear Association	4.340	1	. 037		
N of Valid Cases	452				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 89.88 .
b. Computed only for a 2×2 Table

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Nominal by Nominal	Phi	-. 098			. 037
	Cramer's V	. 098			. 037
	Contingency Coefficient	. 098			. 037
Interval by Interval	Pearson's R	-. 098	. 047	-2.091	.037c
Ordinal by Ordinal	Spearman Correlation	-. 098	. 047	-2.091	.037c
N of Valid Cases		452			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Gender*Feature: Noise pollution (man-made)

Chi-Square Tests					
	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	.007a	1	. 933		
Continuity Correction ${ }^{\text {b }}$. 000	1	1.000		
Likelihood Ratio	. 007	1	. 933		
Fisher's Exact Test				1.000	. 509
Linear-by-Linear Association	. 007	1	. 933		
N of Valid Cases	453				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 56.61.
b. Computed only for a 2×2 Table

Gender*Feature: Holiday season and feeling of being overcrowded

Chi-Square Tests					
	Value	df	Asymp. Sig. (2sided)	Exact Sig. (2sided)	Exact Sig. (1sided)
Pearson Chi-Square	$.105^{\text {a }}$	1	.746		
Continuity Correction ${ }^{\text {b }}$. 050	1	. 823		
Likelihood Ratio	. 105	1	. 746		
Fisher's Exact Test				. 762	.412
Linear-by-Linear Association	. 105	1	. 746		
N of Valid Cases	453				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 70.40 .
b. Computed only for a 2×2 Table

Gender*Feature: man-made infrastructure and built up areas

Chi-Square Tests					
	Value	df	Asymp. Sig. (2- sided)	Exact Sig. (2sided)	Exact Sig. (1sided)
Pearson Chi-Square	.999a	1	. 317		
Continuity Correction ${ }^{\text {b }}$. 808	1	. 369		
Likelihood Ratio	1.000	1	. 317		
Fisher's Exact Test				. 365	. 184
Linear-by-Linear Association	. 997	1	. 318		
N of Valid Cases	452				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 72.03 .
b. Computed only for a 2 x 2 Table

Gender*Feature: litter and fly tipping
Chi-Square Tests

			Asymp. Sig. (2- sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square	Value	df			
Continuity Correction ${ }^{\text {b }}$	2.603^{a}	2.305	1	.107	
Likelihood Ratio	1	.129			
Fisher's Exact Test	2.605	1	.107		
Linear-by-Linear Association	2.597				
N of Valid Cases	453				

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 94.52 .
b. Computed only for a 2×2 Table

Appendix 13
Age and residency to the north, south and middle of the Purbeck Ridge

Age of participant * Is town/village North, South or Middle of Purbeck Ridge?

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \& \& \begin{tabular}{l}
\% within Age of participant \% within Is town/village North, South or Middle of Purbeck Ridge? \\
\% of Total
\end{tabular} \& \(35.1 \%\)
\(27.0 \%\)
10.1\% \& \(57.0 \%\)
\(30.2 \%\)
16.5\% \& \begin{tabular}{c}
\(7.9 \%\) \\
\hline \(28.1 \%\) \\
\\
\(2.3 \%\)
\end{tabular} \& \(100.0 \%\)
28.9\%

28.9%

\hline \& 76+ \& Count \& 34 \& 50 \& 8 \& 92

\hline \& \& | \% within Age of participant |
| :--- |
| \% within Is town/village North, | \& 37.0\% \& 54.3\% \& 8.7\% \& 100.0\%

\hline \& \& South or Middle of Purbeck \& 23.0\% \& 23.3\% \& 25.0\% \& 23.3\%

\hline \& \& Ridge? \& \& \& \&

\hline \& \& \% of Total \& 8.6\% \& 12.7\% \& 2.0\% \& 23.3\%

\hline \multirow[t]{6}{*}{Total} \& \& Count \& 148 \& 215 \& 32 \& 395

\hline \& \& \multirow[t]{2}{*}{\% within Age of participant \% within Is town/village North,} \& \multirow[t]{2}{*}{37.5\%} \& \multirow[t]{2}{*}{54.4\%} \& \multirow[t]{2}{*}{8.1\%} \& \multirow[t]{2}{*}{100.0\%}

\hline \& \& \& \& \& \&

\hline \& \& South or Middle of Purbeck \& 100.0\% \& 100.0\% \& 100.0\% \& 100.0\%

\hline \& \& Ridge? \& \& \& \&

\hline \& \& \% of Total \& 37.5\% \& 54.4\% \& 8.1\% \& 100.0\%

\hline
\end{tabular}

Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	3.437^{a}	12	.992
Likelihood Ratio	4.771	12	.965
Linear-by-Linear Association	.830	1	.362
N of Valid Cases	395		

a. 8 cells (38.1%) have expected count less than 5 . The minimum expected count is . 16 .

	Symmetric Measures		
Nominal by Nominal	Phi	Value	Approx. Sig.
	Cramer's V	.093	.992
	Contingency Coefficient	.066	.992
N of Valid Cases		.093	.992
	395		

Appendix 14

Age and features that are considered to make an area more tranquil

	\% within Feature: Natural Environment and Sounds \% of Total	21.2% 18.8%	39.2% 4.4%	23.2% 23.2%
Total	Count	401	51	452
	\% within Age of participant	88.7\%	11.3\%	100.0\%
	\% within Feature: Natural	100.0\%	100.0\%	100.0\%
	Environment and Sounds			
	\% of Total	88.7\%	11.3\%	100.0\%

Each subscript letter denotes a subset of Feature: Natural Environment and Sounds categories whose column proportions do not differ significantly from each other at the .05 level.

Chi-Square Tests

Chi-Square Tests			
	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	13.806^{a}	6	.032
Likelihood Ratio	16.153	6	.013
Linear-by-Linear Association	8.452	1	.004
N of Valid Cases	452		

a. 4 cells (28.6%) have expected count less than 5 . The minimum expected count is . 34 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. ${ }^{\text {b }}$	Approx. Sig.
Nominal by Nominal	Phi	. 175			. 032
	Cramer's V	. 175			. 032
	Contingency Coefficient	. 172			. 032
Interval by Interval	Pearson's R	. 137	. 044	2.932	.004c
Ordinal by Ordinal	Spearman Correlation	. 147	. 045	3.163	.002 ${ }^{\text {c }}$
N of Valid Cases		452			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Age of participant * Feature: Large Open Spaces

Each subscript letter denotes a subset of Feature: Large Open Spaces categories whose column proportions do not differ significantly from each other at the .05 level.

Chi-Square Tests			
	Value	df	Asymp. Sig. (2sided)
Pearson Chi-Square	$16.765^{\text {a }}$	6	. 010
Likelihood Ratio	16.019	6	. 014
Linear-by-Linear Association	$.503$	1	. 478
N of Valid Cases	452		

a. 4 cells (28.6%) have expected count less than 5 . The minimum expected count is . 70.

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Nominal by Nominal	Phi	. 193			. 010
	Cramer's V	. 193			. 010
	Contingency Coefficient	. 189			. 010
Interval by Interval	Pearson's R	. 033	. 051	. 709	.479c
Ordinal by Ordinal	Spearman Correlation	. 055	. 049	1.173	. $241{ }^{\text {c }}$
N of Valid Cases		452			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Age of participant * Feature: Few People

Each subscript letter denotes a subset of Feature: Few People categories whose column proportions do not differ significantly from each other at the .05 level.

Chi-Square Tests				
	Value	df	Asymp. Sig. (2- sided)	
Pearson Chi-Square	15.432^{a}		6	.017
Likelihood Ratio	16.122	6	.013	
Linear-by-Linear Association	.766		1	.381
N of Valid Cases	452			

a. 3 cells (21.4%) have expected count less than 5 . The minimum expected count is . 86.

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Nominal by Nominal	Phi	. 185			. 017
	Cramer's V	. 185			. 017
	Contingency Coefficient	. 182			. 017
Interval by Interval	Pearson's R	-. 041	. 049	-. 875	.382 ${ }^{\text {c }}$
Ordinal by Ordinal	Spearman Correlation	-. 030	. 048	-. 635	.526 ${ }^{\text {c }}$
N of Valid Cases		452			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Age of participant*Feature: In keeping with Purbeck Landscape

Chi-Square Tests			
	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	4.071^{a}		6
Likelihood Ratio	4.101	6	.667
Linear-by-Linear Association	.862		1

a. 2 cells (14.3%) have expected count less than 5 . The minimum expected count is
1.28 .

Age of participant*Feature: See coastline and hear sea
Chi-Square Tests

Chi-Square Tests						

a. 3 cells (21.4%) have expected count less than 5 . The minimum expected count is 1.00 .

Appendix 15

Age and features which are consider to least represent ideas of tranquillity

			Feature: Noise pollution (man-made)		Total
			Yes	No	
Age of participant	18-25	Count	3 a	0_{a}	3
		\% within Age of participant	100.0\%	0.0\%	100.0\%
		\% within Feature: Noise pollution (man-made)	0.9\%	0.0\%	0.7\%
		\% of Total	0.7\%	0.0\%	0.7\%
	26-35	Count	11_{a}	1 a	12
		\% within Age of participant	91.7\%	8.3\%	100.0\%
		\% within Feature: Noise pollution (man-made)	3.3\%	0.9\%	2.7\%
		\% of Total	2.4\%	0.2\%	2.7\%
	36-45	Count	$11_{\text {a }}$	7 a	18
		\% within Age of participant	61.1\%	38.9\%	100.0\%
		$\begin{aligned} & \text { \% within Feature: Noise } \\ & \text { pollution (man-made) } \end{aligned}$	3.3\%	6.1\%	4.0\%
		\% of Total	2.4\%	1.5\%	4.0\%
	46-55	Count	$54_{\text {a }}$	13^{3}	67
		\% within Age of participant	80.6\%	19.4\%	100.0\%
		\% within Feature: Noise pollution (man-made)	16.0\%	11.3\%	14.8\%
		\% of Total	11.9\%	2.9\%	14.8\%
	56-65	Count	97 a	27 a	124
		\% within Age of participant	78.2\%	21.8\%	100.0\%
		\% within Feature: Noise pollution (man-made)	28.8\%	23.5\%	27.4\%
		\% of Total	21.5\%	6.0\%	27.4\%
	66-75	Count	97 a	26_{a}	123
		\% within Age of participant	78.9\%	21.1\%	100.0\%
		\% within Feature: Noise pollution (man-made)	28.8\%	22.6\%	27.2\%
		\% of Total	21.5\%	5.8\%	27.2\%
	76+	Count	64a	$41_{\text {b }}$	105
		\% within Age of participant	61.0\%	39.0\%	100.0\%

	\% within Feature: Noise pollution (man-made)	19.0\%	35.7\%	23.2\%
	\% of Total	14.2\%	9.1\%	23.2\%
Total	Count	337	115	452
	\% within Age of participant	74.6\%	25.4\%	100.0\%
	\% within Feature: Noise pollution (man-made)	100.0\%	100.0\%	100.0\%
	\% of Total	74.6\%	25.4\%	100.0\%

Each subscript letter denotes a subset of Feature: Noise pollution (man-made) categories whose column proportions do not differ significantly from each other at the .05 level.

Chi-Square Tests

			Asymp. Sig. (2- sided)
Pearson Chi-Square	Value	df	18.206^{a}

a. 4 cells (28.6%) have expected count less than 5 . The minimum expected count is
. 76 .

Symmetric Measures

		Value	Asymp. Std. Error ${ }^{\text {a }}$	Approx. $\mathrm{T}^{\text {b }}$	Approx. Sig.
Nominal by Nominal	Phi	. 201			. 006
	Cramer's V	. 201			. 006
	Contingency Coefficient	. 197			. 006
Interval by Interval	Pearson's R	. 124	. 046	2.646	.008c
Ordinal by Ordinal	Spearman Correlation	. 129	. 048	2.768	.006 ${ }^{\text {c }}$
N of Valid Cases		452			

a. Not assuming the null hypothesis.
b. Using the asymptotic standard error assuming the null hypothesis.
c. Based on normal approximation.

Age of participant*Feature: Man-made infrastructure and built up areas

Chi-Square Tests			
	Value	df	Asymp. Sig. (2sided)
Pearson Chi-Square	$9.182^{\text {a }}$	6	. 164
Likelihood Ratio	9.005	6	. 173
Linear-by-Linear Association	1.710	1	. 191
N of Valid Cases	451		

a. 3 cells (21.4%) have expected count less than 5 . The minimum expected count is . 96.

Age of participant*Feature: Holiday season and feeling of being overcrowded
Chi-Square Tests

	Value	df	Asymp. Sig. (2sided)
Pearson Chi-Square	$8.857^{\text {a }}$	6	. 182
Likelihood Ratio	8.997	6	. 174
Linear-by-Linear Association	. 040	1	. 841
N of Valid Cases	452		

a. 3 cells (21.4%) have expected count less than 5 . The minimum expected count is .95 .

Age of participant*Feature: Seaside Noise

Chi-Square Tests

	Value	df	Asymp. Sig. (2sided)
Pearson Chi-Square	$11.800^{\text {a }}$	6	. 067
Likelihood Ratio	12.813	6	. 046
Linear-by-Linear Association	3.681	1	. 055
N of Valid Cases	451		

a. 3 cells (21.4%) have expected count less than 5 . The minimum expected count is
1.22.

Age of participant*Feature: Litter and fly tipping

Chi-Square Tests			
	Value	df	Asymp. Sig. (2sided)
Pearson Chi-Square	10.668 ${ }^{\text {a }}$	6	. 099
Likelihood Ratio	10.763	6	. 096
Linear-by-Linear Association	8.596	1	. 003
N of Valid Cases	452		

a. 2 cells (14.3%) have expected count less than 5 . The minimum expected count is
1.27.

Appendix 16

Residency and features that are considered to make an area more tranquil

Residency* Feature: Natural environment and sounds

Chi-Square Tests			
	Value	df	Asymp. Sig. (2sided)
Pearson Chi-Square	. $681^{\text {a }}$	2	. 711
Likelihood Ratio	. 688	2	. 709
Linear-by-Linear Association	. 122	1	. 727
N of Valid Cases	398		

a. 1 cells (16.7%) have expected count less than 5 . The minimum expected count is 3.62 .

Residency* Feature: Large Open Spaces

Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	2.210^{a}	2	.331
Likelihood Ratio	2.187	2	.335
Linear-by-Linear Association	1.376		1

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 7.08 .

Residency* Feature: Few People

Chi-Square Tests

	Value	df	$\begin{array}{c}\text { Asymp. Sig. (2- } \\ \text { sided) }\end{array}$
Pearson Chi-Square	2.544^{a}		2
2.556	2	.280	
Likelihood Ratio	2.517		1

Linear-by-Linear Association
N of Valid Cases
a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 8.84 .
Chi-Square Tests

	Value	df	$\begin{array}{c}\text { Asymp. Sig. (2- } \\ \text { sided) }\end{array}$
Pearson Chi-Square	2.234^{a}	2	.327
Likelihood Ratio	2.221	2	.329
Linear-by-Linear Association	.157		1

N of Valid Cases
a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 10.77 .

Residency* Feature: In keeping with Purbeck Landscape

Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	$.064^{\mathrm{a}}$	2	.969
Likelihood Ratio	.063	2	.969
Linear-by-Linear Association	.041	1	.839
N of Valid Cases	398		

a. 0 cells (0.0%) have expected count less than 5 . The minimum
expected count is 13.35 .

Appendix 17

Residency and features that are considered to least represent ideas of tranquillity

Feature: Holiday season and feeling of being overcrowded * Is town/village North, South or Middle of Purbeck Ridge?

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \& \multicolumn{3}{|l|}{Is town/village North, South or Middle of Purbeck Ridge?} \& \multirow[b]{2}{*}{Total} \\
\hline \& \& \& North \& South \& Middle \& \\
\hline Feature: Holiday season and feeling of being overcrowded \& Yes \& \begin{tabular}{l}
Count \\
\% within Feature: \\
Holiday season and feeling of being overcrowded \% within Is town/village North, South or Middle of Purbeck Ridge? \% of Total
\end{tabular} \& \begin{tabular}{l}
109 \\
40.1\% \\
72.7\% \\
27.4\%
\end{tabular} \& \[
\begin{array}{r}
136 \\
\hline 50.0 \% \\
\hline 63.0 \% \\
\hline 34.2 \% \\
\hline
\end{array}
\] \& \begin{tabular}{r}
27 \\
\(9.9 \%\) \\
\\
\hline \(84.4 \%\) \\
\(6.8 \%\)
\end{tabular} \& \[
\begin{array}{r}
272 \\
100.0 \% \\
68.3 \% \\
\hline 68.3 \% \\
\hline
\end{array}
\] \\
\hline \& No \& \begin{tabular}{l}
Count \\
\% within Feature: \\
Holiday season and \\
feeling of being \\
overcrowded \\
\% within Is town/village \\
North, South or Middle \\
of Purbeck Ridge? \\
\% of Total
\end{tabular} \& 41
\(32.5 \%\)
\(27.3 \%\)
\(10.3 \%\) \& 80
\(63.5 \%\)
\(37.0 \%\)
\(20.1 \%\) \& 5
\(4.0 \%\)

15.6%

1.3% \& $$
\begin{array}{r}
126 \\
100.0 \% \\
\\
31.7 \% \\
31.7 \% \\
\hline
\end{array}
$$

\hline Total \& \& | Count |
| :--- |
| \% within Feature: |
| Holiday season and feeling of being overcrowded \% within Is town/village North, South or Middle of Purbeck Ridge? \% of Total | \& \[

$$
\begin{array}{r}
150 \\
37.7 \% \\
\\
100.0 \% \\
37.7 \%
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
216 \\
54.3 \% \\
\\
\hline 100.0 \% \\
54.3 \% \\
\hline
\end{array}
$$
\] \& 32

8.0%

100.0\% \& $$
\begin{array}{r}
398 \\
100.0 \% \\
100.0 \% \\
100.0 \%
\end{array}
$$

\hline
\end{tabular}

Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	7.987^{a}	2	.018
Likelihood Ratio	8.461	2	.015
Linear-by-Linear Association	.058	1	.810
N of Valid Cases	398		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 10.13 .

Symmetric Measures

		Value	Approx. Sig.
Nominal by Nominal	Phi	.142	.018
	Cramer's V	.142	.018
	Contingency Coefficient	.140	.018
N of Valid Cases		398	

Residency*Feature: Man-made infrastructure and built up areas
Chi-Square Tests

			Asymp. Sig. (2- sided)
Vearson Chi-Square	$.111^{\mathrm{a}}$	2	.946
Likelihood Ratio	.111	2	.946
Linear-by-Linear Association	.077	1	.781
N of Valid Cases	397		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 9.91 .

Residency*Feature: Seaside noise
Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	$.357^{\mathrm{a}}$	2	.837
Likelihood Ratio	.356	2	.837
Linear-by-Linear Association	.015	1	.903
N of Valid Cases	397		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 12.01 .

Residency*Feature: Litter and fly tipping
Chi-Square Tests

	Asymp. Sig. (2- sided)		
Pearson Chi-Square	1.935^{a}	2	.380
Likelihood Ratio	1.926	2	.382
Linear-by-Linear Association	.017	1	.896
N of Valid Cases	398		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 13.35 .

Residency*Feature: Noise pollution
Chi-Square Tests

	Value	df	Asymp. Sig. (2- sided)
Pearson Chi-Square	2.895^{a}	2	.235
Likelihood Ratio	3.051	2	.217
Linear-by-Linear Association	2.731	1	.098
N of Valid Cases	398		

a. 0 cells (0.0%) have expected count less than 5 . The minimum expected count is 8.20 .

Engagement, Gender and the feature 'Noise pollution (man-made)

Cell Counts and Residuals

Engaged or Disengaged	Gender	Feature: Noise pollution (manmade)	Observed		Expected		Residuals	Std. Residuals
			Count ${ }^{\text {a }}$	\%	Count	\%		
Disengaged	Female	Yes	86.500	19.1\%	86.500	19.1\%	. 000	. 000
		No	43.500	9.6\%	43.500	9.6\%	. 000	. 000
	Male	Yes	86.500	19.1\%	86.500	19.1\%	. 000	. 000
		No	35.500	7.9\%	35.500	7.9\%	. 000	. 000
Engaged	Female	Yes	86.500	19.1\%	86.500	19.1\%	. 000	. 000
		No	15.500	3.4\%	15.500	3.4\%	. 000	. 000
	Male	Yes	79.500	17.6\%	79.500	17.6\%	. 000	. 000
		No	22.500	5.0\%	22.500	5.0\%	. 000	. 000

a. For saturated models, .500 has been added to all observed cells.

| Goodness-of-Fit Tests |
| :--- | :--- | :--- |
| Chi-Square df Sig.
 Likelihood Ratio .000 0
 Pearson .000 0 |

a. Tests that k-way and higher order effects are zero.
b. Tests that k-way effects are zero.

Step Summary						
Step ${ }^{\text {a }}$		Effects	Chi-Squarec	df	Sig.	Number of Iterations
0	Generating Class ${ }^{\text {b }}$	EngagedorDisengag ed*Q5*Q8cNP	. 000	0		
	Deleted Effect 1	EngagedorDisengag ed*Q5*Q8cNP	2.169	1	. 141	2
1	Generating Class ${ }^{\text {b }}$	EngagedorDisengag ed*Q5, EngagedorDisengag ed*Q8cNP, Q5*Q8cNP	2.169	1	. 141	

a. At each step, the effect with the largest significance level for the Likelihood Ratio Change is deleted, provided the significance level is larger than 050 .
b. Statistics are displayed for the best model at each step after step 0 .
c. For 'Deleted Effect', this is the change in the Chi-Square after the effect is deleted from the model.

Convergence Information ${ }^{\text {a }}$

Generating Class	EngagedorDisengaged*Q8cNP
Number of Iterations	
Max. Difference between Observed	
and Fitted Marginals	
Convergence Criterion	

a. Statistics for the final model after Backward Elimination.

Cell Counts and Residuals

Engaged or Disengaged	Gender	Feature: Noise pollution (manmade)	Observed		Expected		Residuals	Std. Residuals
			Count	\%	Count	\%		
Disengaged	Female	Yes	86.000	19.0\%	86.000	19.0\%	. 000	. 000
		No	43.000	9.5\%	39.000	8.6\%	4.000	. 641
	Male	Yes	86.000	19.0\%	86.000	19.0\%	. 000	. 000
		No	35.000	7.7\%	39.000	8.6\%	-4.000	-. 641
Engaged	Female	Yes	86.000	19.0\%	82.500	18.3\%	3.500	. 385
		No	15.000	3.3\%	18.500	4.1\%	-3.500	-. 814
	Male	Yes	79.000	17.5\%	82.500	18.3\%	-3.500	-. 385
		No	22.000	4.9\%	18.500	4.1\%	3.500	. 814

Goodness-of-Fit Tests
$\left.\begin{array}{\|l\|r\|r\|r\|}\hline & \text { Chi-Square } & \text { df } & \text { Sig. } \\ \hline \text { Likelihood Ratio } & 2.451 & & 4 \\ \text { Pearson } & 2.442 & & 4\end{array}\right) .653$

[^0]: ${ }^{1} 21.9 \%$ response rate
 ${ }^{2}$ 44.7\% 'engaged'
 ${ }^{3} 55.3 \%$ 'disengaged’
 ${ }^{4} 50.8 \%$ female
 ${ }^{5} 49.2 \%$ male
 ${ }^{6} 50.4 \%$ aged $66-76+$ years
 77.4% aged $18-45$ years
 ${ }^{8}$ The design of these two listings was directly informed by top responses on tranquillity and non-tranquillity amongst the participants who attended the previously held participatory action consultations in May 2014. (Refer to Methodology Report)
 ${ }^{9}$ Figure only based on responses to structured questions. Inclusive of open questions, this amount increases to 4,561.
 ${ }^{10} 88.2 \%$ of responses

[^1]: ${ }^{11}$ Oppenheim 1992 p 12
 ${ }^{12}$ Field 2005; Rowntree 1981
 ${ }^{13} 1$ questionnaire contained missing data
 1455.3% 'disengaged’
 ${ }^{15} 44.7 \%$ 'engaged'
 ${ }^{16} 68.1 \%$ are members of a society/association or group in the area
 ${ }^{17} 11.8 \%$ are a member of the Dorset County Council Citizen Panel
 ${ }^{18} 57.8 \%$ have been involved in at least one public consultation or a survey in relation to planning in the area in the last 12 months.

[^2]: ${ }^{19}$ Hewlett 2010: Hewlett \& Edwards 2013
 ${ }^{20} 64.7 \%$ of the 'engaged' respondents
 ${ }^{21} 37.6 \%$ of the 'disengaged' respondents
 ${ }^{22}$ A concern derived from the Data Protection Act 1998 and related to the research team re-approaching respondents to engage their interest further at the Resident Events held in July 2014 (refer to Project Report I Section 1.2)

[^3]: ${ }^{23} 4$ questionnaires contained missing data
 2450.8% female
 25 49.2\% male
 ${ }^{26}$ Population Estimates for UK, England and Wales, Scotland and Northern Ireland, Mid 2013' published 26 June 2014
 2751.1% female
 2848.9% male
 ${ }^{29} 5$ questionnaires contained missing data
 ${ }^{30} 50.4 \%$ aged $66+$ years
 317.4% aged 18-45 years

[^4]: ${ }^{32} 59$ questionnaires contained missing data
 ${ }^{33} 54.3 \%$ south of Purbeck Ridge
 ${ }^{34} 37.7 \%$ north of Purbeck Ridge
 ${ }^{35} 8 \%$ middle of Purbeck Ridge

[^5]: ${ }^{36} 88.2 \%$ respondents
 ${ }^{37}$ Of the 88 respondents who ticked 'other', 82 respondents provided comments.

[^6]: ${ }^{38}$ Top five features identified by participants as detracting from tranquillity at the PAC events held previously

[^7]: ${ }^{39}$ Of the 102 respondents who ticked 'other', 96 respondents provided a comment.

[^8]: ${ }^{40} 44.7 \%$ 'engaged'
 ${ }^{41} 51.6 \%$ female
 ${ }^{42} 48.4 \%$ male

[^9]: ${ }^{43} 72.2 \%$ disengaged

[^10]: ${ }^{44} 49.8 \%$ respondents south of the Purbeck Ridge ('disengaged')
 ${ }^{45} 50.2 \%$ respondents south of the Purbeck Ridge ('engaged')
 ${ }^{46} 42.7 \%$ respondents north of Purbeck Ridge ('engaged')
 4757.3% respondents north of Purbeck Ridge ('disengaged')
 ${ }^{48} 40.6 \%$ respondents middle of the Purbeck Ridge ('engaged')
 ${ }^{49} 59.4 \%$ respondents middle of the Purbeck Ridge ('disengaged')

[^11]: ${ }^{50}$ Of the 457 respondents that completed the questionnaire, 1 respondent did not indicate whether they were engaged/disengaged hence the difference to Table 6.

[^12]: ${ }^{51} 68.3 \%$ 'disengaged'
 52 80.9\% 'engaged'
 ${ }^{53} 31.7 \%$ 'disengaged’
 ${ }^{54} 19.1 \%$ 'engaged'
 ${ }^{55}$ Where $r=.10$ for small effect, .30 for medium effect and .50 for large effect

[^13]: ${ }^{56} 27.4 \%$ females aged 56-65 years
 ${ }^{57} 24.8 \%$ females aged 66-75 years
 ${ }^{58} 27.5 \%$ males aged 56-65 years
 ${ }^{59} 29.7 \%$ males aged 66-75 years
 ${ }^{60} 28.4 \%$ males aged $76+$ years
 ${ }^{61} 11.3 \%$ females aged 18-45 years
 623.2% males aged 18-45 years

[^14]: ${ }^{63} 29.6 \%$ females aged 18-55 years
 ${ }^{64} 70.4 \%$ females aged $56-76+$ years
 ${ }^{65} 14.4 \%$ males aged $18-55$ years
 ${ }^{66} 85.6 \%$ males aged $56-76+$ years
 ${ }^{67} 48.6 \%$ female reside south of Purbeck Ridge
 ${ }^{68} 51.4 \%$ male reside south of Purbeck Ridge
 ${ }^{69} 56.3 \%$ female reside in middle of Purbeck Ridge
 7043.8% male reside in middle of Purbeck Ridge

[^15]: ${ }^{71} 71.3 \%$ female
 ${ }^{72} 61.9 \%$ male
 ${ }^{73} 28.7 \%$ female
 7438.1% male
 ${ }^{75}$ Where $r=.10$ for small effect, .30 for medium effect and .50 for large effect

[^16]: ${ }^{76} 54.8 \%$ female
 ${ }^{77} 45.2 \%$ female
 ${ }^{78} 64.4 \%$ male
 ${ }^{79} 35.6 \%$ male

[^17]: ${ }^{80}$ Where $r=.10$ for small effect, .30 for medium effect and .50 for large effect (reference)

[^18]: ${ }^{81}$ For example DCLG 2006 a \& b; Parry et al. 1992; Hewlett 2010.

[^19]: ${ }^{82} 91.7 \%$ of respondents aged 26-35 years

[^20]: ${ }^{83}$ SNH 2005

[^21]: ${ }^{84} 40.1 \%$ reside to the north of the Purbeck Ridge
 859.9% reside in the middle of the Purbeck Ridge
 ${ }^{86} 84.4 \%$ of residents living in the middle of the Purbeck Ridge

[^22]: ${ }^{87} 72.7 \%$ of residents living to the north of the Purbeck Ridge
 ${ }^{88} 63.5 \%$ of residents living to the south of the Purbeck Ridge

[^23]: ＊appears twice in comments

[^24]: a. 2 cells (14.3%) have expected count less than 5 . The minimum expected count is 1.34 .

